
Department of
AUTOMATIC CONTROL

Nonlinear Control and Servo Systems (FRTN05)
Exam - May 28, 2008, 2–7 pm

Points and grades
All answers must include a clear motivation. The total number of points is 25. The
maximum number of points is specified for each sub-problem. Most sub-problems
can be solved independently of each other.
Preliminary grades:

3: 12− 16 points

4: 16.5− 20.5 points

5: 21− 25 points

Accepted aid
All course material, except for exercises and solutions to old exams, may be used
as well as standard mathematical tables and authorized “Formelsamling i re-
glerteknik”. Pocket calculator.

Results
The exam results will be posted within two weeks after the day of the exam on
the notice-board at the Department. Contact the lecturer Anders Robertsson for
checking your corrected exam.

Note!
In many cases the sub-problems can be solved independently of each other.

Good Luck!
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Nonlinear Control and Servo Systems, May 2008

Solutions to the exam in Nonlinear Control and Servo Systems (FRTN05)
May, 2008.

1. Consider the control system

ẍ− 2(ẋ)2 + x = u− 1 (1)

a. Write the system in first-order state-space form. (1 p)

b. Suppose u(t) " 0. Find and classify (using linearization) all equilibria and
determine if they are stable or asymptotically stable if possible. Discuss if the
stability results are global or local. (2 p)

c. Show that Eq. (1) satisfies the periodic solution x(t) = cos(t), u(t) = cos(2t).
(1 p)

d. Design a state-feedback controller u = u(x, ẋ) for (1), such that the origin of
the closed loop system is globally asymptotically stable. (1 p)

Solution

a. Introduce x1 = x, x2 = ẋ

ẋ1 = x2

ẋ2 = −x1 + 2x2
2 + u− 1

(2)

b. Let ẋ1 = ẋ2 = 0 [ (x1, x2) = (−1, 0) is the only equilibrium. The lineariza-
tion around this point is

A =
[ 0 1
−1 4x2

]
(xo1, xo2)=(−1, 0)

=

[ 0 1
−1 0

]
B =

[ 0
1

]

The characteristic equation for the linearized system is s2 + 1 = 0 [ s = ±i.
In general linearization only gives local behaviour of the nonlinear system,
but as the linaerized sytem has a center point we can not conclude even local
stability of the nonlinear system from this.

c.
x = cos(t) [ ẋ = − sin(t) [ ẍ = − cos(t)

By inserting this in the system dynamics and using e.g., u = cos(2t) =
cos2(t) − sin2(t) = 2 cos2(t) − 1 we get

ẍ− 2(ẋ)2 + x = − cos(t) − 2 sin2(t) + cos(t) = 2+ cos2(t) − 2 = u− 1

which shows that the trajectory is a solution.
The linearized system is thus

δ ẋ =
[ 0 1
−1 4x2

]
(xo1, xo2)=(cos(t),− sin(t))

δ x+
[ 0

1

]
δu

=

[ 0 1
−1 −4 sin(t)

]
δ x+

[ 0
1

]
δu

(3)

where
δ x =

[ x1(t) − cos(t)
x2(t) − (− sin(t))

]
, δu = u(t) − cos(2t)
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d. The simplest way is to cancel the constant term and the nonlinearity with
the control signal and introduce some linear feedback.

u = +1− 2(ẋ2)
2 − aẋ, a > 0 [ ẍ+ aẋ+ x = 0

As the resulting system is linear and time invariant with poles in the left
half plane for all a > 0 it is GAS.

2. Consider the system in Figure 1.

a. Introduce states and find all equilibrium points of the system. (1.5 p)

b. Sketch the vector field locally around one of the equilibrium points of the
system in a phase plane plot. (1 p)

Trigonometric

Function

sin

Transfer Fcn

1

s+1

Product

Integrator

1

s

Gain

4

Add

Figure 1 System in Problem 2.

Solution

a. Set x1 after “Integrator” and x2 after “Transfer Fcn”. The signal entering the
“Transfer Fcn”-block is 4x1 + x2

2. The state equations become

ẋ1 = sin(x2) (4)
ẋ2 = −x2 + (4x1 + x2

2) (5)

The equilibrium points are determined by setting the derivatives to 0. The
first equation gives sin(x2) = 0 which gives that x2 = kπ where k = ... −
2,−1, 0, 1, 2... at the equilibrium points. The second equation gives x1 =
x2(1− x2)/4 = kπ(1− kπ)/4 at the equilibrium points.

b. The origin is an equilibrium point (saddle point). A phase plane plot of the
system is found in Figure 2.

3. We want to design an oscillator by the interconnection of a first order system
with time delay, and a relay, see Figure 3. The system G(s) = k

s+ 1
· e−Ls and

φ(·) is a relay with amplitude 1 ( i.e., φ(z) = si�n(z)). We want to achieve an
oscillation with amplitude = 2 Volts and a frequency of 5 Hz. Determine the
parameters k > 0 and L > 0 to achieve this. Will the oscillation be stable?
Motivate your answer. (3 p)
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Figure 2 Phase plane plot for problem 2

g

phi

-

+

Figure 3 The block diagram for the oscillator system in Problem 3. The nonlinearity φ(·)
is a relay with amplitude 1

Solution
The describing function for a relay which switches between −1 and 1 is
N(A) = 4

Aπ
. Find k and L such that G( jω) = −1/N(A). A = 2 and

ω = 2π · 5 = 10π

ar�{G( jω)} = −atan(ω/1) −ωL = −π [ L ( 0.05

pG( jω)p = k/
√
ω2 + 12 =π/2 [ k ( 50

It will be a stable limit cycle (see course literature for condition).

4. An exponentially stable linear system G(s) is negative feedback intercon-
nected with a nonlinearity ψ . The Nyquist diagram of the linear system is
shown in Figure 4. (Note: For your answer it is more important to clearly
mark in a figure where you get your data from than to have all digits correct.)

a. What is the larges sector ψ ∈ [−k, k] for which the small gain theorem
guarantees stability for the closed loop? (1 p)

b. What is the largest sector ψ ∈ [0, β ] for which the circle criterion guarantees
stability for the closed loop? (1 p)
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Figure 4 Nyquist diagram for linear system G(s) in Problem 4.

c. What if you know that the nonlinearity is negative and upper bounded by 0?
Find the largest sector ψ ∈ [α, 0], where α < 0 for which the circle criterion
guarantees stability for the closed loop. (1 p)

Solution

a. In this case we first want to find the maximum gain of the linear system
which equals the largest magnitude (’radius’) of the Nyquist curve. From the
Nyquist curve we see that this is about 2. The small gain theorem then allows
the sector to have k < 1/2 = 0.5.

b. According to the circle criterion, in this case the closed loop will be stable for
the nonlinearity in the sector [0, β ] if the Nyquist curve stays to the right
of the vertical line −1/β . From the Nyquist curve we see that we can take
β ( 1/0.25 = 4.

c. Multiply the nonlinearity and the system by -1 and apply the “ordinary” circle
criterion. This means that the mirrored Nyquist curve must stay to the right
of −1/(−α). The mirrored Nyquist curve is to the right of the vertical line
−1.6, which means we can choose α = −1/1.6
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5. Use Lyapunov theory to prove that the system

ẋ = −x− 2y2

ẏ = xy− y3

is globally asymptotically stable. (2 p)

Solution
One choice is the Lyapunov function

V(x, y) = x2 + 2y2.

Then

d
dt
V = 2xẋ+4yẏ = −2x2−4xy2+4xy2−4y4 = −2x2−4y4 < 0, (x, y) ,= 0.

As V is positive and radially unbounded this proves global asymptotic stability
of the system.
Another choice of Lyapunov function is

V(x, y) = 1
2
(x2 + y2).

This gives

d
dt
V = xẋ+ yẏ = −(x2 + xy2 + y4) = −(x+ 1

2
y2)2 −

3
4
y4 < 0, (x, y) ,= 0

which also proves global asymptotic stability of the system.

6. The famous control engineer Wanda B. Stable has tried to stabilize the system

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 + x2u1.

for several days without success. In her desperation she has consulted her
Swedish friend Anna Lys. “—I am desperate. I have tried everything: lineariza-
tion, Lyapunov theory, sliding . . . It just doesn’t seem to be possible. What do
you say, Anna?”. What should Anna answer? Is it possible to find a control
law u = [u1(x), u2(x)] so that the origin x = 0 is made locally asymptotically
stable? (Hint: Consider the function H = x3− x1x2 and see how it evolves with
time.) (2 p)

Solution
We have Ḣ = 0 so H(x(t)) = H(x(t0)), no matter how x(t) evolves, and no
matter how we chose u1 and u2. Note that H(0) = 0.
Now assume that the system is initiated near the origin with H(x(t0)) ,= 0.
Since Ḣ = 0, the system will never reach H(x(t)) = 0, and therefore the
states will never be asymptotically stabilized in x = 0.
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7. Consider the system

ẋ1 = −x1 + 2x2
2 − 2 sign(x1 + x2) + u

ẋ2 = x1

a. Set u=0 and calculate the sliding surface. Also determine if the dynamics on
the sliding surface is stable. (2 p)

b. Design a continuous controller, u, that brings all solution to the switching
line x1 + x2 = 0. Does this control change the behaviour on the switching
line? (1.5 p)

Solution

a. The dynamics are

ẋ1 = −x1 + 2x2
2 − 2 sign(x1 + x2)

ẋ2 = x1

set σ (x) = x1+ x2 and use equivalent control to calculate the sliding surface.
Use ueq ∈ [−1 1]

ẋ1 = −x1 + 2x2
2 + 2ueq

ẋ2 = x1

Set σ̇ (x) = 0

σ̇ (x) = ẋ1 + ẋ2 = −x1 + 2x2
2 + 2ueq + x1 = 0 (6)

Thus ueq = −x2
2. Since ueq ∈ [−1 1] the sliding surface is between x2 = −1

and x2 = 1. The dynamics on the sliding surface are σ̇ (x) = ẋ1 + ẋ2 =
ẋ1 + x1 = 0 which means that the dynamics are ẋ1 = −x1, ẋ2 = x1 = −x2
which is asymptotically stable.

b. Choose Lyapunov function V(x) = σ 2/2 which gives

dV
dt

= (x1 + x2)(−x1 + 2x2
2 − 2sign(x1 + x2) + u+ x1) (7)

= (x1 + x2)(2x2
2 − 2sign(x1 + x2) + u) (8)

Choose u = −2x2
2. This gives

dV
dt

= −2(x1 + x2)sign(x1 + x2) = −2px1 + x2p ≤ 0 (9)

This means that we will reach the surface σ (x) in finite time and we will stay
there. The dynamics on the sliding line with the chosen control is

ẋ1 = −x1

ẋ2 = x1 = −x2

which in this case is the same as without the continous feedback.
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8.

a. Solve the optimal control problem

max x2(1)
ẋ1 = −u3, x1(0) = 0
ẋ2 = x1 + u, x2(0) = 0

where u(t) ≥ 0 for all t ≥ 0. (3 p)

b. How would the solution change if u ∈ [0, 0.1]? (1 p)

Solution

a. The problem is normal, can put n0 = 1. We have L = 0 and φ(x(1)) = −x2(1)

H = λ1(−u3) + λ2(x1 + u)

Hence

λ̇1 = −
�H
�x1

= −λ2

λ̇2 = −
�H
�x2

= 0

The end condition is λ(1) = φ x, that is λ1(1) = 0 and λ2(1) = −1. This gives
λ2(t) " −1, λ1(t) = t− 1. Minimization of

H = −(x2 + u) − (t− 1)u3

with respect to u gives

u∗ =

√
1

3(1− t)
> 0

Note: This expressions makes �H
�u = 0, but should also check that this is a

minimum and also check the bound u = 0.

b. From the solution in (a) we see that the solution
u∗a ≥ 1/3 > 0.1.
Minimize H wrt u ∈ [0, 0.1] where

H = λ1(−u3) + λ2(x1 + u) = (1− t)u3 − u︸ ︷︷ ︸−x2 = −u(1− (1− t)u2)︸ ︷︷ ︸−x2

which has the solution u∗b = 0.1 on the given time interval.

———————————————-
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