Lecture 13 — Nonlinear Control Synthesis Cont'd

Today’s Goal: To understand the meaning of the concepts

v

Gain scheduling

Internal model control

v

v

Model predictive control

Nonlinear observers

v

Lie brackets

v

Material:

» Lecture notes

» Internal model, more info in e.g.,

» Section 8.4 in [Glad&Ljung]
» Ch 12.1 in [Khalil]



Gain Scheduling

Command
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Example of scheduling variables

» Production rate

» Machine speed

» Mach number and dynamic pressure

Compare structure with adaptive control!
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Results

Without gain scheduling
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Results

With gain scheduling
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Gain Scheduling

» state dependent controller parameters.
> K=K(q)

» design controllers for a number of operating points.
> use the closest controller.

Problems:
» How should you switch between different controllers?
» Bumpless transfer

» Switching between stabilizing controllers can cause instability.
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Internal Model Control

Feedback from model error y —y.
Design: Choose G ~ G and Q@ stable with Q =~ G L



Two equivalent diagrams
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Example

1
G(s) =
(s) 1+sT;
Choose L4 ST
@= 14+ 7s

Gives the Pl controller
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Internal Model Control Can Give Problems

» Unstable G
» Q% G ! due to RHP zeros

» Cancellation of process poles may show up in some signals



Internal Model Control with Static Nonlinearity

Include the nonlinearity in the model in the controller.
Choose Q ~ G~ 1.



Example (cont'd)

Assume r =0 and G = G:

1+sT; n 1
— v
1—|—7‘sy 14+ 7s

u=-Qy—Gv)=

Same as before if |u] < umax: Integrating controller.
If |u] > uUmax then

_1+5T1 Umax
l—i-Tsy 14 7s

No integration. (A way to implement anti-windup.)
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Model Predictive Control — MPC
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1. Derive the future controls u(t +j), j=0,1,...,N—1 that
give an optimal predicted response.

2. Apply the first control u(t).

3. Start over from 1 at next sample.



What is Optimal?

Minimize a cost function, V/, of inputs and predicted outputs.

u(t+ N —1) y(t+ M|t)
V=V(U,Y:), U= , Y=
u(t) y(t+1t)

V often quadratic
V(Uh Yt) = YtTQy Yt + UtTQu Ut

— linear controller
u(t) = —Lx(t|t)



Model Predictive Control

+ Flexible method
* Many types of models for prediction:
> state space, input—output, step response, FIR filters

* MIMO
* Time delays

-+ Can include constraints on input signal and states

+ Can include future reference and disturbance information
— On-line optimization needed

— Stability (and performance) analysis can be complicated

Typical application:
Chemical processes with slow sampling (minutes)



A predictor for Linear Systems

Discrete-time model

x(t + 1) = Ax(t) + Bu(t) + B,vi(t)

t=0,1,...

y(t) = Cx(t) + wva(t)
Predictor (v unknown)

X(t + k + 1]t) = AX(t + k|t) + Bu(t + k)
y(t + k|t) = Cx(t + k|t)



The M-step predictor for Linear Systems

X(t|t) is predicted by a standard Kalman filter, using outputs up to

time t, and inputs up to time t — 1.
Future predicted outputs are given by

u(t+M—1)
y(t + Mit) caM CB CAB CA’B ... :
: = | X(tlt)+ 0 B CAB ...l |y(t+N-1)
y(t+1]t) CA s ' : ;
u(t)

Yt - DX)?(t‘t) + DuUt



Limitations

Limitations on control signals, states and outputs,
|U(t)| <G |Xi(t)| < CX,' |)/(t)| < Cya

leads to linear programming or quadratic optimization.
Efficient optimization software exists.



Design Parameters

Model
M (look on settling time)

v

v

v

N as long as computational time allows
If N < M —1 assumption on u(t+ N),...,u(t+M —1)
needed (e.g., =0, = u(t+ N —1).)

> Qy, Qy (trade-offs between control effort etc)

v

» C,, C, limitations often given
» Sampling time

Product: ABB Advant



Example—Motor

1 0.139 0.214
A= [o 0.861]  B= [2.786] - c=(19)
r
Minimize V(U;) = || Yt — R|| where R = | : | , r=reference,

r
M=8 N=2 u(t+2)=u(t+3)=u(t+7)=...=0



Example—Motor

CA® CA°B CA’B
Ve=| ¢ [ x0+| & [”(t“)]
CA 0 CB
= Dyx(t) + D, U

Solution without control constraints

U;=—(DID,) D] Dx+ (D D,) DR =
_ (-250 —0.18) (xa(t)—r
- 277 051 x3(t)

u(t) = —2.77(x1(t) — r) — 0.51xx(t)

Use



Example—Motor—Results

No control constraints in opti- Control constraints |u(t)| <1 in
mization (but in simulation) optimization.
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Nonlinear Observers

What if x is not measurable?
x = f(x,u), y=h(x)
Simplest observer (open loop — only works for as. stable systems).
X = (X, u)
Correction, as in linear case,
x = f(%,u)+ K(y — h(x))

Choices of K
» Linearize f at xg, find K for the linearization
» Linearize f at x(t), find K(t) for the linearization

Second case is called Extended Kalman Filter



A Nonlinear Observer for the Pendulum

Control tasks:

1. Swing up
2. Catch

3. Stabilize in upward position

The observer must to be valid for
a complete revolution

Q>



A Nonlinear Observer for the Pendulum

2
=sinf 4+ ucosf

dt?
X1 = 0, Xp = d0 —
dX1
— =X
.~ °
dxo . N
—= =sinx; + ucosx
n 1 1
Observer structure:
dxq
— =X +ki(x1 — X
i 2 1(x1 — %1)
ax N A A
222 _sin X1 + ucos Xy +ko(x1 — X1)

dt



A Nonlinear Observer for the Pendulum

Introduce the error X = X — x

dxi

ke S g

ar 1X1 + X2

dx A . n -
d—t2 =sin Xy — sinx; + u(cos Xy — cos x1) — kaXy

<= o B+ )

v = 2sin %(cos (x1 + %) — usin(xy + %))

X1 14




Stability with Small Gain Theorem

The linear block:

1
G(s) = ———
(S) 52—|—k15+k2
1
|m|2 = w* + (kf = 2kp)w? + k3
= (w? — ko + Kk /2)* — ki /4 + K} ky
——L | if k< 2k
v6 = max |G(iw)| = { Vhkik—ki/4
o if k2 > 2k,



Stability with Small Gain Theorem

v = 2sin %(cos (x1 + %) — usin(x; + %))
v < |8y + ufa = Bl&]
The observer is stable if v¢8 <1
2k 24 k2 /4, if kg < /2B
— k2 > 5 1 + 1/ ; I 1 )
5) if kl Z \/2/8



A Nonlinear Observer for the Pendulum

Control Signal
T

5 T
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Controllability

Linear case
x = Ax + Bu

All controllability definitions coincide

0— x(T),

x(0) — 0,

x(0) — x(T)
T either fixed or free

Rank condition System is controllable iff
W, = (B AB ... A"—ls] full rank

Is there a corresponding result for nonlinear systems?



Lie Brackets

Lie bracket between f(x) and g(x) is defined by

_ Og of
[fag] - a f ax
Example:
COS X | x
=711
8g of
Frgl = 5of — o

Ox

? )6 ) ()
[COSX2 +sin X2]



Why interesting?

x = g1(x)u1 + g2(x)uz

(1,0), te[0,¢€
. B (0,1), t€ e 2€]
» The motion (u1, u2) = (=1.0), t € [2¢,3¢]
(0,—1), t € [3¢4¢]
gives motion x(4¢) = x(0) + €%[g1, g] + O(€3)
[g 8] nll_>ngo(d>\/_q>l/;q>\/_q>\/_)

» The system is controllable if the Lie bracket tree has full

ran k (controllable=the states you can reach from x = 0 at fixed time T contains a ball around x = 0)



The Lie Bracket Tree

(g1, [g1, &2]] [&2; [g1 &]]

[glv [glv [glv 2]]] s Bl [g17 g2]]] [gh [g2v [gl 2]]] 5 po2> [gh gz]]]



Parking Your Car Using Lie-Brackets

X 0 cos(¢ + 6)

d |yl |0 sin(¢ + 0)

dat o] ~ |o sin(9) | 2
0 1 0



Parking the Car

Can the car be moved sideways?
Sideways: in the (—sin(¢), cos(¢), 0,0) " -direction?

0g» 0
[g1, 8] = —g1 - ailgg

'O 0 —sin(p+6) —sin(p+96)
0 0 cos(p+6) cos(e+6)
O O 0 cos(0)

COS

0
—sin(p + 0)
cos go + (9) gy = “wriggle”

= O O O



Once More

0g» 0
(g3, 8] = —gs - %gz

—sin(p)
= COSO(SD) = “sideways”
0

The motion [g3, g2] takes the car sideways.

(=sin(¢), cos(¢))



The Parking Theorem

You can get out of any parking lot that is bigger than your car.
Use the following control sequence:

Wriggle, Drive, ~Wriggle(this requires a cool head), —Drive
(repeat).



Outline

o Gain scheduling

o Internal model control
o Model predictive control
o Nonlinear observers

o Lie brackets

e Extra: Integral quadratic constraints



Integral Quadratic Constraint

The (possibly nonlinear) operator A on L5'[0, 00) is said to satisfy
the IQC defined by I if

o [ Plw) |7 V(iw)
/. [ (Bv)(iw) ] ) [ (Bv)(iw) ] A=

for all v € L3[0, 00).



|QC Stability Theorem

TA

G(s) —( )=—

Let G(s) be stable and proper and let A be causal.
For all 7 € [0, 1], suppose the loop is well posed and 7A satisfies
the IQC defined by MN(iw). If

[ G(;w) T N(iw) [ G(Iiw) ] <0 forw € [0, o]

then the feedback system is input/output stable.



A structure M(iw) Condition

s [21]
IO - (i) > 0
L R e
§(¢) € [-1.1 e

e x(iw)pw)? 0 (w) =
A(s)=e s _ 1 [ OP —x(iw) ] 2max‘9f|)§90 sin(fw/2)



A Matlab toolbox for system analysis

http://www.ee.mu.oz.au/staff/cykao/

-
g e

——O 6

>> abst_init_iqc;

>> G = tf([10 0 0],[1 2 2 11);
>> e = signal

>> w = signal

>> y = -Gx(etw)

>> w==iqc_monotonic (y)

>> iqc_gain_tbx(e,y)




A servo with friction

Gain2 Saturation

Step

+
+ 252425+1
l» P+
015245

Sum1 Integrator Integrator1 Scope

Gain1 Sum Gain Transfer Fcn




An analysis model defined graphically

monotonic with
restrict rate

performance

252+25+1
0.0152+5+.01 Sum1 | \ ;
Sum ntegrator ntegrator
Gain Transfer Fcn
+14¢
+
Sum2

Exp(-ds)-1 [«

uncertain delay



igc_gui (P fricSYSTEM’)

extracting information from fricSYSTEM ...

scalar inputs: 5
states: 10
simple gq-forms: 7

LMI #1 size = 1 states: O
LMI #2 size = 1 states: O
LMI #3 size = 1 states: O
LMI #4 size = 1 states: O
LMI #5 size = 1 states: O

Solving with 62 decision variables ...

ans = 4.7139



A library of analysis objects

e | fOOp

{0} >@>

S(s+1) performance
Transfer Fon  Zero—Pole polytope encapsulated odd deadzone
M>
white noise 1O F ) FA } s
performance -

polytope with
restrict rate

norm bounded N @r& b
u k > AlS)p
LTI unmodeled
unknown const NS

monotonic with
restrict rate

sector+popov diagonal structure

Gain Matrix

Gain sat-int

encapsulated deadzone

Step Source
TV scalar

odd slope nonlinearity

Mux Demux STV scalar
o O
In Out

slope nonlineari
harmonic delay P ty



The friction example in text format

d=signal;

e=signal;

wl=signal;

w2=signal;

u=signal;

v=tf (1, [1 0])*(u-wl)

x=tf(1, [1 0])*v;

e==d-x-w2;

u==10*tf([2 2 1]1,[0.01 1 0.01])*e;
wl==iqc_monotonic(v,0,[1 5],10)
w2==iqc_cdelay(x,.01)
iqc_gain_tbx(d,e)

b
b
b
)
b
)
b

disturbance signal
error signal
friction force
delay perturbation
control force
velocity

position



Summary

e Gain scheduling

e Internal model control
e Model predictive control
e Nonlinear observers

e Lie brackets

e Extra: Integral quadratic constraints



Next: Lecture 14

» Course Summary



