Lecture 12: Dynamic Programming

December 7, 2015

Dynamic programming

v

Closed loop formulation of optimal control

v

Intuitive methods of solution

v

Guarantees global optimality

v

Iteratively solves the problem starting at the end-time

'Life can only be understood backwards;
but it must be lived forwards’

Kierkegaard

Example: Shortest path

As an example we try to find the shortest path from “A” to “H"” in
the above graph.

Example: Shortest path

We proceed with backward induction. Once the final node is
reached the remaining cost is 0.

Example: Shortest path

Knowing the cost at “H" to be 0, costs of getting from “E", “F"
and “G" to “H" are easily computed.

Example: Shortest path

Now the optimal “cost-to-go” at “E”, “F" and "“G" can be used to
get the optimal “cost-to-go” at “B”, “C" and "D".

Example: Shortest path

In the next step we arrive at the origin.

Example: Shortest path

The procedure also gives us the optimal path.

Basic problem formulation: The system

» First we assume that the system is in discrete time
a:kH:fk(ack,uk), kZO,l,...,N—l

where x, is the state uy, € U(xy) is the control.
» Feedback-control implies uy = ug(zk)
> In closed-loop form the system can thus be written

Trr1 = fr(@r, pr(ze))

Basic problem formulation: The cost

» We let = {po, pi1, ..., un—1} and assume that we have an
additive cost

N-1

Ju(xo) = gn(zN) + Z gk (T, pr(xr))
k=0

» Total cost J,,(z) is a function of both initial state z(and
feedback law p
» N is the horizon of the problem
» Finite-horizon: N < oo
» Infinite-horizon: N = oo, gy =0

Basic formulation: Minimal cost and optimal strategy

» An optimal policy p* is one that minimizes J, (o) (for all x¢)

J = min J,
I (7o) 1;06111% u(l‘o)

optimization is performed over the set, I, of admissible
control policies

» For deterministic problems a control is admissible whenever
> up = pg(zy) € Ulzg)

The principle of optimality

Let p* = {pg, 115, - .-, y_1 } be an optimal policy for the basic
problem and assume that when applying u©*, a given state x;
occurs at time ¢, when starting at zg.

Consider the subproblem whereby we are in state x; at time ¢ and
wish to minimize the “cost-to-go” from time ¢ to time N

N-1

gn(@N) + > gk, pr(n)-
k=i

Principle of optimality
The truncated policy {p, 15,1, _1} is optimal for this
subproblem.

Principle of optimality

> Google maps fastest
route from LTH to
KTH passes through
Jonkoping

» Subpath starting in
Jonkoping is the
fastest route from
Jonkoping to KTH

u]
o)
1
n
it

DA

The dynamic programming algorithm

Let
N-1

Vi(wk) = gn(an) + > g5z, 15 (x5))
=k

so that Vi (z) is the optimal “cost-to-go” from time k to time N
The Bellman equation

For every initial state xg, the optimal cost J*(z0) is given by the
last step in the following backward-recursion.

Vi(zk) = min [gr(zg, ug, wr) + Vg1 (fr (2, ug))]
up €U (zk)

Vn(zn) = gn(2N)

We get the optimal control “for-free”

pi(zg) = argmin [gg(@k, uk, wi) + Vi1 (Fre(zr, k)]
up €U (z1)

Managing spending and saving

Example

An investor holds a capital sum in a building society, which gives
an interest rate of # x 100% on the sum held at each time
k=0,1,...,N — 1. The investor can chose to reinvest a portion u
of the interest paid which then itself attracts interest. No amounts
invested can ever be withdrawn. How should the investor act so as
to maximize total reward by time N — 17

» We take as the state xj the present income at time
k=0,1,...,N —1 and let u; € [0, 1] be the fraction of

reinvested interest, hence
Tpr1 = T + Ougzy =: f(ag, uk)

» The reward is gx(z,u) = (1 — u)x and gny(x,u) = 0.

Managing spending and saving
» The optimality equation is V(N,z) =0,

V(k,z) = Orilaicl{(l—u)a:—l—V(k:—H, (14+0u)x)}, k=0,1,...,N—1

> We get
VN —1,2) = max {(1 -u)z+0} ==z
V(N —2,2) = Or;z}%(l{(l —u)x + (1 + 0u)x}

= 0213%(1{237 + (0 — Dux} = max{2,1+ 6}z = pox

» Guess: V(N — s+ 1,x) = ps—1z, then
V(N —s,z) = 0?3%(1{(1 —uw)z + ps—1(1 +ub)x)}

= max{l + ps_1, (1 + 0)ps—1}x = psz

Managing spending and saving

» We have thus verified that V(N — s, z) = psz, and found the
recursion

Ps = Ps—1 + max{l, 9/0571}
> Together with p; = 1 this gives

s for s < s* .
P {3*(1 +6)°=%" otherwise. s =[1/0]

» The optimal policy is then

|1 fork< N —s*
Y =0 for k > N — s*.

Continuous time optimal control: The HJB-equation

v

So far we have only considered the discrete time case

» Dynamic programming can also be applied in continuous time,
this leads to the Hamilton-Jacobi-Bellman (HJB) equation:
Benefits over PMP:

+ Gives closed-loop optimal control in continuous time
+ Sufficient condition of optimality

v

Drawbacks:

v

— Requires solving a highly non-linear PDE
— Well-posedness of the PDE problem proved only in the '80s

Continuous time problem formulation

> In continuous time the system is given by

&(t) = f(x(t),u(t), te€]0,T]

with 2(0) = zo and u(t) € U(x(t)), for all t € [0,T].
» We define the cost as

T
J(20) = $(a(T)) + / L(x(t), u(t))dt

» With optimal “cost-to-go" from (t,x)

V(t,7) = min {qﬁ(a:(T)) + /tT L(x(t), u(t))dt}

The HJB-equation: Informal derivation

» divide [0, 7] into N subintervals of length 6 = T'/N
» Let 2, = x(kd) and ux, = u(kd), for k=0,1,..., N and
approximate the system by

'Tk+1:'rk+f($k7uk)6a k=0,1,...,N.

» The optimal “cost-to-go” is approximated by

N-1
V(kd,x) = min [p(zn)+ Lz, ug)o]

UQ e UN —1
k=0

The HJB-equation: Informal derivation

» Dynamic programming now yields
V(kd,x) = ggg[L(x, w)d + V((kE+ 1),z + f(z,u)d)],
V(No,z) = ¢(x).
» For small § we get (with t = k0)
V(t+6,xz+ flz,u)d) = V(t,x) + Vi(t,x)d + V,V(t, x) - f(z,u)d

> Inserting this in the DP equation gives

V(t,x) zmi{rJl[L(a:, w)d + V(t, x)
ue

+ Vi(t,2)d + V.V (t,) - f(x,u)d]

The HJB-equation

The Hamilton-Jacobi-Bellman equation

For every initial state xg, the optimal cost is given by
J*(zo) = V(0,20) where V(t,x) is the solution to the PDE

Vi(t,x) = — gél(r]l [L(xz,u) + ViV (t,x) - f(z,u)]
V(T,z) = ¢(x)

As before the optimal control is given in feedback form by

w(t,z) = argergin [L(z,u) + V,V(t,x) - f(z,u)]

Example: The HJB-equation

Example
Consider the simple example involving the scalar system

with the constraint |u(t)| <1 for all ¢ € [0,7] and the cost
1 2
Two) = 5 (x(T))

» The HJB equation for this problem is

Vi(t,x) = — min 1[Vw(ta$)u]

with terminal condition V(T x) = 22 /2.

Example: The HJB-equation

» An optimal control for this problem is

1 forz <0
w(t,z) = 0 forxz=0
-1 forxz >0

» The optimal “cost-to-go” with this control is

Vit,z) = %(maX{O, | — (T = 1)})?2

Example: The HJB-equation

TN Tt

» For |x| > T —t we have V(t,7) = 1/2(|z| — (T — t))?, hence

Vi=lz| = (T = 1)

Join Vot o)ul = —sgn(@)Va(t, 2) = —sgn(@)? (|| = (T = ¢))

= —(lz[= (T = 1))

» For |z| < T —t we have V(t,z) = 0 and the HJB equation
holds trivially

Infinite horizon problem

Assume that the final cost is ¢(z(7")) = 0 and the final time
T — 400, and that there exists some control such that the total
cost remains bounded in the limit. Hence, we want to solve

+oo
min /0 L), u®))dt, 2(0) = g

u

It is intuitive that the cost-to-go from (z,t)

u

T
V(z,t) = min/t L(z(t),u(t))dt =V (x)

does not depend on the initial time but only on the initial state.
The HJB equation then becomes

0= mgn {L(x,u) + g—‘;(x) : f(x,u)}

Observe that, for scalar problems, this is an ODE!

Infinite horizon problem: example

min /0+oo(a:4(t) + ut(t))dt, z(0) = zo

u

From the stationary HJB eqn we get
0 = min {934 + ut 4V (z) - u}
u

and putting the derivative with respect to u equal to 0

=3 (iVx(x)>4/3

which gives V,(z) = £4(%)%42® and the + sign should be chosen
to have V positive definite)since L is. This gives the optimal
feedback control law

w@) = ~([Val)V? = ()

Dynamics Programming for LTI systems, quadratic costs

Consider the optimal feedback control problem for an LTI system
& = Ax 4+ Bu with cost

T
J = /0 (' (t)Qxz(t) + ' (t)Ru(t)) dt + x(T)' Mz(T)

where @@, R, M are symmetric positive definite. The HJB eqn reads
0 = min {z'Qz + v'Ru + V; + V] (Az + Bu)}
u

with final time condition V(7T z) = 2/ M.

Dynamics Programming for LTI systems, quadratic costs
With the ansatz V(z,t) = 2/ P(t)z with symmetric P(t), we get
that the optimal control is in the form

u* = —-R'B'Pz
and P = P(t) satisfies the following differential eqn
P=-PA-AP-Q+PBR'BP P(T)=M

which is called the differential Riccati equation (DRE).
For the infinite horizon problem this reduces to

0=—-PA—AP—-Q+PBR 'B'P

which is called the algebraic Riccati equation (ARE).

Bonus: Dynamic programming and randomness

» So far we have only considered deterministic systems
» For deterministic systems open-loop and closed-loop control

coincide
» Minimizing over admissible policies ;1 = {po ..., inv—1}
equivalent to minimizing over control vectors {ug, ..., un_1}

» Given p, future states are perfectly predictable through
Trt1 = fr(@p, pe(ze)), k=0,1,...,N—1
» Corresponding controls perfectly predictable through
up = i ()

» When introducing randomness in the state evolution, closing
the loop becomes important

Problem formulation with randomness: The system

» We assume that the system is in discrete time but add
randomness

Th1 = fr(@r, uk, wi)

where zj; is the state uy € U(xy) is the control and wy, is a
noise term.

» The distribution of the noise term wy only depends on the
past through xp and uy

> In closed-loop form the system can thus be written

Tpy1 = fr(xr, pe(Tr), wi)

Basic problem formulation: The cost

> In the random case we get the cost

N-1

Ju(wo) = E |gn(zN) + Z Gk (T, pr(2g), W)
k=0

where expectation is taken over the random variables z; and
Wi

» Expected cost J,, () is a function of both initial state z(and
feedback law p

Basic formulation: Minimal cost and optimal strategy

» An optimal policy p* is a policy that minimizes .J,(xg) (for
every)

J, (o) = min J,(x

w (20) min u(To)

» Optimization is performed over the set, 11, of admissible
controls

> uy € U(xy), for all zy,
» u;, does not depend on future events

Basic formulation: Minimal cost and optimal strategy

» An optimal policy p* is a policy that minimizes .J,(xg) (for
every)
Ju+(xg) = min J,(x
u (20) min u(@o)
» Optimization is performed over the set, 11, of admissible
controls
> uy € U(xy), for all zy,
» wuy does not depend on future events

» Optimal control is in feedback-form uj = pj ()

The value of information

Two chess players play a two round chess match. Winning one
round gives 1 point, drawing gives 1/2 and losing gives 0. If the
score after the two rounds is tied the match will be decided by
sudden death.

Player 1 has the opportunity of adapting his strategy by selecting
to play either timid or bold,

» Timid: Draws with probability p; and loses with probability
1 — pq (no chance of winning)

» Bold: Wins with probability p,, and loses with probability
1 — py (no chance of drawing)

Two round chess match
Player 1 is thus faced with the problem of finding the strategy that
maximizes his probability of winning the match.

Open-loop strategy

With an open-loop strategy Player 1 has to decide beforehand how
to play in each round.

1. Timid-timid: Probability p?lpw of winning the match
2. Bold-bold: Probability p2, + 2p2 (1 — pw) = p2%(3 — 2py) of
winning the match

3. Timid-bold: Probability pgp, + (1 — pq)p?, of winning the
match

4. Bold-timid: Probability p,pq + p2,(1 — pg) of winning the
match

Open-loop probability of win = max(p (3 — 2py), pwpa + P2, (1 — pg))
= pay + pu(1 — puw) max(2pw, pa)
Optimal open loop strategy:
> pg > 2py,: Timid-bold or bold-timid
> pg < 2py,: Bold-bold
> pg = 2py,: All except timid-timid are optimal

Closed-loop strategy

Here we start with a bold strategy in the first round and choose
1. Bold-timid: If score is 1-0 after Round 1
2. Bold-bold: If score is 0-1 after Round 1

Closed-loop probability of win = p,pg + p2 (1 — pa) + (1 — pw)p
= ply + Puw(l = Puw) (Pw + Pa)
Comparing with the open-loop case gives
Value of information =p2 + py, (1 — pw) (Pw + Pa)

— p2 — puw(l — pw) max(2py, pa)
=pu (1 — pw) Min(py, Pd — Pw)

The dynamic programming algorithm
Now,

N-1

Vi) = E |gn(an) + D g5(aj, 15 (2;), w;)
=k

The Bellman equation

For every initial state xg, the optimal cost J*(zg) is given by the
last step in the following backward-recursion.

Vi(zr) = min Egg(@r, uk, wg) + Vg1 (fe(@r, ur, wi))]
up €U (xk)

Vn(zNn) = gn(2N)
We get the optimal control “for-free”

pri(zg) = argmin E [gg(@k, uk, wi) + Vi1 (Fre(2r, ug, wi))]
up €U (x1)

Example: Selling an asset

Optimal asset selling

Consider a person having an asset that has to sell within N time
periods. Every time period he gets a new offer, that he can either
accept or reject. These offers are given by a sequence of
independent random variables wq, w1, ...,wy_1. When the seller
accepts an offer he can invest the money at fixed interest rate

r > 0. The sellers objective is to maximize the revenue at day V.

» We let u;, = 0 represent rejecting to k" offer and u;, = 1
when accepting offer k
» We also introduce the terminal state T" that x; enters once

the asset is sold and get the state equation xx1 = f(xg, wi),
where

T ifa, =T (sold), or if z # T and uy, =1 (sell),
wy, otherwise.

f (i) = {

Example: Selling an asset

» The corresponding reward function may be written as

N-1
E|gn(zn)+) gk(xkyukawk)]
k=i
where
T if © T
gn(an) = {()N fax iT.
and

14+7)N"Fg, ifxp £ T and ug, =1 (sell),
9k, Ui W) = {(()) otherv;fise. tel)

Example: Selling an asset

> This gives the DP algorithm

if
Vi(aw) = {:(]);N o ig
and
_ [max{(1 +r)NFzp, E[Vigr (wi)]} ap #T
Vilzr) = 4 =T,

> We thus get the policy

w — 1 ifx > oy
FTl0 i o < ay,

where
B[V (wy)]

(14)Nk

Example: Selling an asset

> Let us now assume that the wy are identically distributed

» Introduce the functions Gy (zx) = (1 +7)* "NV (21), hence
for IN, Tk 75 T

Gn(zN) =N
Gy(zr) = max{zg, (1 +7) ' E[Gry1(w)]}

and
_ ElGrp(w)]
af = ————=
1+7r
» Now Gn_i(z) > Gn(z) and if Gj11(x) > Gjpo(x) then
Gj(x) > Gj41(x), hence by induction G (z) > Gjy1(z) for

k=0,...,N—1

» This shows that a4, is a decreasing sequence

Example: Selling an asset

» To compute the sequence ayj we note that
Gr(zr) = max{xy, oy}, hence

1
= —E[G
Qg 1tr (Gry1(w)]
! Plw < 1+ ! b fw(x)d
_1—|—7’ak+1 W S Ok4q 1—|—7’ ak-H.TwCC X

» Since by definition oy = 0 this gives a recursion for oy,
k=1,...,N

Example: Selling an asset

» Assume that w is Exp(1) distributed i.e. fi,(z) =e™®
» We have Plw < aq1] =1 — e “+1 and

/ xfuw(x)dr =e % (apq + 1)

k+1

> This gives the recursion

1 1
= 1 — o Qk+1 —Ok41 1
ay, 1+rak+1(e)+ T ¢ (g1 +1)

_ Qg1
1t T(ak—i-l +e)

Example: Selling an asset

ACCEPT

REJECT

The figure shows the optimal policy for r = 0.01 and N = 20.

Optimal stopping

» Optimal stopping problems are a special case of the basic
problem in which the control can only take two values e.g.
{0,1} one of which renders the cost (reward) ¢(x) and
makes the system enter an absorbing terminal state 1" after
which no further cost is incurred

» The Dynamic programming algorithm for optimal stopping
problems can be written

Vn(zn) = én(zN)
Vie(zg) = min{ g (z), E [Vir1 (f (vx, wi))]}

» For optimal stopping problems we can define a set

T ={z: ¢r(x) < E [Vig1(f(xk, wg))]} called the
termination set

Optimal stopping: The one-stage look-ahead rule

» Sometimes extracting the optimal policy by backward
iteration in the DP algorithm is complex

» For a specific type of problems we do not need to solve the
DP however

» Define the set S = {(k,) : ¢x(x) < E[dpr1(f(zk, wi))]}

» If (k,xzx) € S it is better to stop now than to continue and
stop in the next step

> Assume that the set S is absorbing in the sense that
(k+1, f(zk,wg)) € S whenever (k,zi) € S

» Then it is optimal to stop iff (k,zx) € S.

