Lecture 10, Optimal Control

Giacomo Como

November 30, 2015



Lecture 10 — Optimal Control

Introduction

v

v

Static Optimization with Constraints

v

Optimization with Dynamic Constraints

v

The Maximum Principle

v

Examples

Material

> Lecture slides
» References to Glad & Ljung, part of Chapter 18

» D. Liberzon, Calculus of Variations and Optimal Control
Theory: A concise Introduction, Princeton University Press,
2010 (linked from course webpage)



Goal

To be able to
» solve simple optimal control problems by hand
» design controllers

using the maximum principle



Optimal Control Problems

Idea: Formulate the design problem as optimization problem

+ Gives systematic design procedure

-+ Can use on nonlinear models

+ Can capture limitations etc as constraints
— Hard to find suitable criterium?!

— Can be hard to find the optimal controller

Solutions will often be of “bang-bang” character if control signal is
bounded, compare lecture on sliding mode controllers.



The beginning

» John Bernoulli: The brachistochrone problem 1696

Let a particle slide along a frictionless curve. Find the curve
that takes the particle from A to B in shortest time
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Find y(z), with y(0) and y(1) given, that minimizes
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» Solved by John and James Bernoulli, Newton, I'Hospital
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Find y(z), with y(0) and y(1) given, that minimizes
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» Solved by John and James Bernoulli, Newton, I'Hospital
» Euler: Isoperimetric problems

» Example: The largest area covered by a curve of given length
is a circle [see also Dido/cow-skin/Carthage].



Optimal Control

» The space race (Sputnik 1957)

» Putting satellites in orbit

» Trajectory planning for interplanetary travel
» Reentry into atmosphere

» Minimum time problems

» Pontryagin's maximum principle, 1956

» Dynamic programming, Bellman 1957

» Vitalization of a classical field



An example: Goddard's Rocket Problem (1910)

How to send a rocket as high up in the air as possible?
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where u = motor force, D(v,h) = air resistance, m = mass.
Constraints
0 <u < Upag, m(tf) > mq

Criterium
Maximize h(ty), ty given



Goddard’s Problem

Can you guess the solution when D(v, h) = 07?

Much harder when D(v,h) # 0
Can be optimal to have low v when air resistance is high. Burn

fuel at higher level.

Took about 50 years before a complete solution was found.

Read more about Goddard at http://www.nasa.gov/centers/goddard/



Optimal Control Problem. Constituents

Control signal u(t),0 <t <ty

Criterium h(ts).

Differential equations relating h(t) and u
Constraints on u

Constraints on x(0) and x(ty)

ty can be fixed or a free variable
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Preliminary: Static Optimization

Minimize g (x,u)
over x € R" and u € R™ s.t. ga(w,u) =0
(Assume go(xz,u) =0 = 0Jgo(x,u)/dx non-singular)

Lagrangian: L(x,u,\) = g1(z,u) + M go(z,u)

Local minima of g;(x,u) constrained on ga(z,u) =0
can be mapped into critical points of L(z,u, \)

Necessary conditions for local minimum
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Note: Difference if constrained control!



Example - static optimization

Minimize
2 2
g1(z1,22) = 7 + 25

with the constraint that

gg(ajl,a:Q) =21 T2 — 1=0

level curves Xsy?=x and consuaintxy=1
J O\
N
8 b
) 1 T

Level curves for constant g; and the constraint go = 0, repectively.



Static Optimization cont'd

Solving the equations
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Sufficient condition for local minimum
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Optimization with Dynamic Constraint

Optimal Control Problem

min J = min {¢(z(tf)) + /tf L(x,u) dt}

to
subject to
= f(z,u), x(ty) =0

Introduce Hamiltonian: H(x,u,\) = L(x,u) + AT f(z,u)

J = o(x(ty)) + / ! (L(az,u) + )\T(f — a:)) dt

= o(a(ty) - [\Ta])! + /ttf (H+ A%) dt

second equality obtained from "integration by parts”.



Optimization with Dynamic Constraint cont'd

Variation of J:

8J = Kaqs AT>5 } +/ KaH )\T> 5x+8—H(5u} dt
oz 1=t t ox ou

Necessary conditions for local minimum (§.J = 0)

. oOH OH
T _ _—— —_— =
A= ox ou 0

r_ 99

t=t;

v

Adjoined, or co-state, variables, A(t)

v

A specified at t =ty and x at ¢ = g
Two Point Boundary Value Problem (TPBV)
For sufficiency ’H H >0

v

v
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Problem Formulation (1)

Standard form (1):

Trajectory cost Final cost

tf ——— —N—

Minimize / L(x(t),u(t)) dt + ¢(x(ts))
0

2(t) = f(x(t), u(t))
u(t) e U, 0<t<ty, tr given
z(0) = xg

z(t) € R™, u(t) € R™
U C R™ control constraints

Here we have a fixed end-time ¢;. This will be relaxed later on.



The Maximum Principle (18.2)

Introduce the Hamiltonian
H(x,u,\) = L(z,u) + N (t) f(z,u).
Assume optimization (1) has a solution {u*(t),z*(¢)}. Then

min H (" (), w, () = H(*" (0,0 (A1), 0<t<ty,

where A(t) solves the adjoint equation

D= HI 0,0 0, M0), with A(tg) = 62" (t)
Notation

Hz_8H2<6H OH >

C 0z \Ox1 Omy



Remarks

Proof: If you are theoretically interested look in [Glad & Ljung].
Idea: note that every change of u(t) from the suggested optimal
u*(t) must lead to larger value of the criterium.

Should be called “minimum principle”

A(t) are called the Lagrange multipliers or the adjoint variables



Remarks

The Maximum Principle gives necessary conditions

A pair (u*(+),z*(+)) is called extremal the conditions of the
Maximum Principle are satisfied. Many extremals can exist.
The maximum principle gives all possible candidates.
However, there might not exist a minimum!

Example

Minimize z(1) when &(t) = u(t), (0) = 0 and u(t) is free

Why doesn’t there exist a minimum?
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Example—Boat in Stream

o min — z1(7T)
T = ’U(l‘g) + uy
v(z2) Ty = U
- (L‘Q(O) =0
- L1 u% + u% =1

Speed of water v(x3) in x1 direction. Move maximum distance in
x1-direction in fixed time T
Assume v linear so that v'(z9) =1



Solution

Hamiltonian:

H=0+ )\Tf = [)\1 )\2] |:§;:| = )\1(’0(1‘2) + ul) + Aousg

Adjoint equation:

m = | Stjon] = oo = |5

with boundary conditions

)= Dozl <[]

This gives \1(t) = =1, X(t)=t-T



Solution

Optimality: Control signal should solve

min A\ (’U(.Z‘Q) + ul) + Aoug

2,2
uituz=1

Minimize Ajuj + Aquso so that (u1,us) has length 1

w(t) = —— ) = -2
NEHORSHON VR + 230
1 T-—1

ul(t) = \/ﬁ, UQ(t) =

See fig 18.1 for plots

Remark: It can be shown that this optimal control problem has a minimum.

Vit ({E—T)?

Hence it must be the one we found, since this was the only solution to MP



5 min exercise

Solve the optimal control problem

1
min [ wldt + z(1)

IS~

—T +u

z(0) =0



5 min exercise - solution

Compare with standard formulation:
tr=1 L=u' p=x flz)=—z+u
Need to introduce one adjoint state
Hamiltonian:
H=L+ X\ f=vu'+A—z+u)

Adjoint equation:

d\  0H ey
L= ==Y —  At)=Ce
06

Altp) = 5- =1 — At) = et



At optimality:



Goddard’s Rocket Problem revisited

How to send a rocket as high up in the air as possible?

(v(0), (0),m(0)) = (0,0,mq), g,7 >0

u motor force, D = D(v, h) air resistance
Constraints: 0 < % < Upqe and m(ty) = my (empty)
Optimization criterion: max;, ., h(ty)



Problem Formulation (2)

ty
min /0L(a:(t),u(t))dt—i—qb(tf,x(tf))
w:[0,tf]=U

&(t) = f(x(t), u(t)), (0) =z
Pty x(ty)) =0

Note the differences compared to standard form:

» tr free variable (i.e., not specified a priori)

» r end constraints

i (ty, z(ty))
U(tp,z(ty)) = : =0

U (ty,a(ty))
» time varying final penalty, ¢(tf, z(t5))

The Maximum Principle will be generalized in the next lecture!
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