Lecture 3

» Phase-plane analysis
» Classification of singularities

» Stability of periodic solutions

Material
» Glad and Ljung: Chapter 13
> Khalil: Chapter 2.1-2.3

» Lecture notes



Today's Goal

You should be able to
» sketch phase portraits for two-dimensional systems

» classify equilibria into nodes, focus, saddle points, and center
points.

» analyze limit cycles through Poincaré maps



First glipse of phase plane portraits: Consider the system
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.231:.231-1—332

Ty = —T1 — T2

x1'=x1%+x2
X2'=-x1-x2




First glipse of phase plane portraits: Consider the system

. 2
.231:.231-1—33‘2

Ty = —T1 — T2

x1'=x1% + x2
X2'=-x1-x2

Flow-interpretation: To each point (z1, x2) in the plane there is an
dx

associated flow-direction 57 = f(x1,22)



First glipse of phase plane portraits: Consider the system

ilzx%-l-l’g

Tog = —T1 — T2

x1'=x12 + x2
x2'=-x1-x2

In the point (21, x2) = (1, 2) the vector field is pointing in the
direction (12 +2, —1 —2) =(3, —3).



Vectorfields in Oceanography ...

On 10 January 1992, during
a storm in the North Pacific
Ocean close to the Interna-
tional Date Line, twelve 40-foot
(13.3 m) intermodal containers
D were washed overboard. One
oo wavs ossssion i of these containers held 28,800

RUNAWAY SNEAKERS AND RUBBER DUCKS

REVOLUTIONIZED OCEAN SCIENCE Floatees
P

http://en.wikipedia.org/wiki/Friendly_Floatees



Linear Systems Revival

d il o T
il =4[

Analytic solution:  z(t) = eAz(0).
If A is diagonalizable, then

At _
At = VeMy 1 = [Ul vg] [60 e?ﬁ] [Ul ’Ug] !

where vy, v are the eigenvectors of A (Avy = A\jv; etc).

Matlab:
>> [V,Lambdal=eig(A)



Example: Two real negative eigenvalues

Given the eigenvalues A1 < Ao < 0, with corresponding
~— ~—

] faster  slower
eigenvectors v1 and v, respectively.

A A

Solution: z(t) = cretvy + cae?tvy

Fast eigenvalue/vector: x(t) =~ c1eMtvy + cavo for small t.

Moves along the fast eigenvector for small ¢

Slow eigenvalue/vector: x(t) ~ coe*?'vy for large t.
Moves along the slow eigenvector towards z = 0 for large ¢



Example—Stable Node

(A, A2) = (=1,-2) and [u UQ]ZB —11}

vy is the slow direction and vy is the fast.
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Equilibrium Points for Linear Systems

stable node unstable node saddle point
ImX\; =0: A1, A2 <0 A1, A2 >0 AL <0< A2
Im)\; 75 0: Re); <0 ReX; > 0 ReX; =0

stable focus unstable focus center point
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Example—Unstable Focus

T = [J —w] x, o,w >0, A2 =0 fiw
w g
1 1] [ectet 0 1 117"
e O o | I | A ()

In polar coordinates r = \/;1:% + x% 0 = arctan xy /1
(x1 =rcosb, zo = rsinb):



Example- unstable focus cont'd

Aig=1=i Ao =03+i

Fhase Flang
Phase Flane 1 T




Equilibrium Points for Linear Systems

stable node unstable node saddle point
ImX\; =0: A1, A2 <0 A1, A2 >0 AL <0< A2
Im)\; 75 0: Re); <0 ReX; > 0 ReX; =0

stable focus unstable focus center point
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4 minute exercise

What is the phase portrait if Ay = A7

Hint: For Ay = Ao = X there are two different cases: only one
linearly independent eigenvector or all vectors are eigenvectors



Star Node or Multi-Tangent Node

Case I: If

A0
= [0 )J x, rank (Al —A) =0

then the solution is




One Tangent Node

Case IlI: If

T = [)\ 1} x, rank (Al — A) =

0 A

then the solution is

There is only one eigenvector: v; = aqvy = [1 0]

Phase plane:

1

T



Linear Time-Varying Systems (warning)

Warning: Pointwise “Left Half-Plane eigenvalues” of A(t)
(i.e., time-varying systems) do NOT impose stability!!!

—1+4+acos®t 1—asintcost
A(t)_<—1—asintcost —1+ asin’t )’ a>0

Pointwise eigenvalues are given by

a—2++va? -4
2

At) ==

which are in the LHP for 0 < a < 2 (and here even constant). However,

(a—1)t —t o
e cost e 'sint
=(t) = ( —el@=Dtgint e~ tcost > 2(0),

which is an unbounded solution for o« > 1.



Phase-Plane Analysis for Nonlinear Systems

Close to equilibria “nonlinear system” = “linear system”.
Theorem Assume

&= f(x)

is linearized at zg so that
&= Az + g(x),

where g € C! and % — 0 as z — xo.

If 2= Az has a focus, node, or saddle point, then & = f(x) has
the same type of equilibrium at the origin.

If the linearized system has a center, then the nonlinear system has

either a center or a focus.



How to Draw Phase Portraits

If done by hand then

1.

AN

Find equilibria (also called singularities)

Sketch local behavior around equilibria
dz1

Sketch (&1, @2) for some other points. Use that e =

Try to find possible limit cycles

Guess solutions

Matlab: pptool6/pptool7, dfield6/dfield7, dee,
ICTools, etc.
PPTool and some other tools for Matlab is available on or via

http://www.control.lth.se/course/FRTNO5

L1

To "



Phase-Locked Loop

A PLL tracks phase 6i,(t) of a signal sin(t) = Asin[wt + Gin(t)].

Sin
—]

Phase Filter veo |
Detector
. K éout 1 gout
sin(-) 1+sT s




Singularity Analysis of PLL

Let 21 (t) = Oout(t) and zo(t) = Ooue(t).
Assume K, T > 0 and 6;,(t) = 6;, constant.

j:‘l = T2
dg = —T lgg + KT™? sin(fi, — 1)

Singularities are (6;, + nm,0), since

1 =0=29=0
29 =0=sin(0;, — 1) =0= 21 =6y + nn



Singularity Classification of Linearized System

Linearization gives the following characteristic equations:
n even:
N4+T 'N+KT ' =0

K > (4T)! gives stable focus
0 < K < (4T)~! gives stable node

n odd:
NeT N—KT1=0

Saddle points for all K, T > 0



Phase-Plane for PLL

K =1/2, T = 1: Focus (2k,0), saddle points ((2k + 1), 0)

Phase Plane

#e




Summary

Phase-plane analysis limited to second-order systems (sometimes it
is possible for higher-order systems to fix some states)

Many dynamical systems of order three and higher not fully
understood (chaotic behaviors etc.)



Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

T1 = f(2k)
is asymptotically stable at z* if the linearization

of

—=| has all eigenvalues in |A\| <1
0x lz*

(that is, within the unit circle).



Example (cont'd): Numerical iteration

Tr1 = f(xr)

to find fixed point




Periodic Solutions: x(t +T') = z(t)

Example of an asymptotically stable periodic solution:

& =21 — 29 — 11 (22 + 22)

B9 =1 + T2 — T2(2] + 23)

Fhaze Flane




Periodic solution: Polar coordinates.

Let
1 =rcosf = dr; = cosfdr — rsinfdf
To =rsinf = dro = sinfdr + r cos 60df
=
7f _1 rcos@ rsinf T
0 )] r\ —sinf cos6 T
Now
i1 =71 —7r%) cosf —rsinf
iy =r(1 —r?)sinf + rcosf
which gives

r=r(l—1?)
=1

Only » = 1 is a stable equilibrium!



A system has a periodic solution if for some 7" > 0
z(t+T)==x(t), V>0

Note that a constant value for z(t) by convention not is regarded
as periodic.

» When does a periodic solution exist?

» When is it locally (asymptotically) stable? When is it globally
asymptotically stable?



Poincaré map (“Stroboscopic map”)

= f(x), xzeR"

©t(q) is the solution starting in ¢ after time t.
¥ ¢ R" ! is a hyperplane transverse to ;.
The Poincaré map P : ¥ — X is

P(q) = Pr(q) (q), 7(q) is the first return time

©i(q)



Limit Cycles

*

If a simple periodic orbit pass through ¢*, then P(q¢*) = ¢*.
Such an orbit is called a /imit cycle.

*

q* is called a fixed point of P.

P(q*) =q"

Does the iteration gx+1 = P(qy) converge to ¢*7



Locally Stable Limit Cycles

The linearization of P around ¢* gives a matrix W = %—1; so

q
(k1 — ") = Wiae — q¢7),

if gy is close to ¢*.

» If all |\;(W)| < 1, then the corresponding limit cycle is locally
asymptotically stable.

> If [X;(W)] > 1, then the limit cycle is unstable.



Linearization Around a Periodic Solution

The linearization of

P is the map from the solution at t = 0 to t = 7(q).



Example—Stable Unit Circle

Rewrite (1) in polar coordinates:
i =r(l—1r?)
f=1

Choose ¥ = {(r,0) : r > 0,0 = 27k}.
The solution is

got(ro,ﬂo) = ([1 + (TO_2 — 1)6_%]_1/2,15 + (90)

First return time from any point (rg,0y) € X is 7(rg,0) = 2.



Example—Stable Unit Circle

The Poincaré map is
P(ro) = [1 4 (rg% — 1)e~22m]71/2

ro = 1 is a fixed point.
The limit cycle that corresponds to r(t) = 1 and 6(t) =t is locally
asymptotically stable, because

dP
W = d—ro(l) = [e7*7]

and
ap

Wl =
W] drg

<1>\ e < 1



Example—The Hand Saw

Can we stabilize the inverted pendulum by vertical oscillations?




The Hand Saw—Poincaré Map

I
&

1 2

To = (g + aw? sin x3> sin x1

£ I

o3(t)

Choose ¥ = {x3 = 27k}.



The Hand Saw—Poincaré Map

¢* =0and T =27 /w. No explicit expression for P. It is, however,
easy to determine W numerically. Do two (or preferably many
more) different simulations with different, small, initial conditions
z(0) =y and z(0) = z.

Solve W through (least squares solution of)

:c(O):z] =W (y z]

This gives for a = 1cm, £ = 17cm, w = 180

W= [ 1.37 0.035]

[a:(T)

x(T)

z(0)=y

—3.86 0.630

which has eigenvalues (1.047,0.955). Unstable.
W is stable for w > 183



The Hand Saw—Stability Condition

Make the assumptions that
{>a and aw? > g

Then some calculations show that the Poincaré map is stable at

q* = 0 when
V29l
a
a=1cmand { =17 cm give w > 182.6 rad/s (29 Hz).

w >




The Hand Saw—Simulation

Simulation results give good agreement
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Next Lecture

» Lyapunov methods for stability analysis

Lyapunov generalized the idea of: If the total energy is dissipated
along the trajectories (i.e the solution curves), the system must be
stable.

Benefit: Might conclude that a system is stable or asymptotically
stable without solving the nonlinear differential equation.




Lab 1: sign-up starts on Monday
A A




