
Department of

AUTOMATIC CONTROL

Nonlinear Control and Servo Systems (FRTN05)

Exam - January 13, 2016, 2 pm – 7 pm

Points and grades

All answers must include a clear motivation. The total number of points is 25. The
maximum number of points is specified for each subproblem.

Preliminary grades:

3: 12− 16.5 points

4: 17− 21.5 points

5: 22− 25 points

Accepted aid

All course material, except for exercises and solutions to old exams, may be used as
well as standard mathematical tables and authorized “Formelsamling i reglerteknik”/”Collection
of Formulae”. Pocket calculator.

Note!

In many cases the sub-problems can be solved independently of each other.

Good Luck!
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1. Consider the control system

z̈ = z − 2sat(ż + z) + u ,

where

sat(y) =


1 if y > 1

y if − 1 ≤ y ≤ 1

−1 if y < −1

is the saturation function and u is a control variable.

a. Rewrite the system in standard state-space form. (1 p)

b. Is the origin a locally asymptotically stable equilibrium for the system above
when the control u = 0? Motivate your answer. (1 p)

c. Is the origin globally asymptotically stable when the control u = 0? Motivate
your answer. (1 p)

d. Design a feedback control u(z, ż) that makes the origin a globally asymptoti-
cally stable equilibrium. (1 p)

Solution

a. Let x1 = z and x2 = ż. Then,

ẋ1 = x2

ẋ2 = x1 − 2sat(x1 + x2) + u.

b. For (x1, x2) close to the origin we have that sat(x1 + x2) = x1 + x2.

Thus the linearization of the system around the origin is

ẋ1 = x2

ẋ2 = −x1 − 2x2.

The characteristic polynomial of the associated matrix A =

[
0 1

−1 −2

]
is

s2 + 2s+ 1, so that A has a unique eigenvalue λ = −1. Since the linearization
around the origin is stable, by Lyapunov’s second theorem, the origin is locally
asymptotically stable.

c. The system has an equilibrium in (x∗1, x
∗
2) = (2, 0). A trajectory starting in this

point will never reach the origin.

d. We can use exact linearization techniques by choosing the control in such a
way that the nonlinearity is erased, and the closed-loop controlled system is
linear and asymptotically stable. This is achieved, e.g., by

u(z, ż) = 2sat(ż + z)− 2(z + ż) .

Indeed, in this case, the closed-loop controlled system z̈ = −z−2ż has standard
form

ẋ1 = x2

ẋ2 = −x1 − 2x2 ,

hence it is globally asymptotically stable.
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2. Find and classify (stable/unstable node/focus, saddle point, center) all equi-
librium points of the system

ẋ1 = sin(2x1 + x2)

ẋ2 = x1(x2 − 1)

that lie in the non-negative quadrant (x1 ≥ 0, x2 ≥ 0). (3 p)

Solution
At an equilibrium point ẋ1 = 0, ẋ2 = 0. For ẋ2 = 0 to hold we must have that
x1 = 0 or x2 = 1.

If x1 = 0, we must have x2 = n1π, in order to have ẋ1 = 0.

If x2 = 1, we must have x1 = n2π−1
2 in order to have ẋ1 = 0.

Thus the equilibrium points in the non-negative quadrant are given by

(0, n1π),

(
n2π − 1

2
, 1

)
, where n1, n2 are integers and n1 ≥ 0 and n2 ≥ 1.

The system matrix for the linearization of the system around an equlibirum
point (x01, x

0
2) is given by

A(x01, x
0
2) =

∂f(x1, x2)

∂x

∣∣∣∣∣
(x1, x2)=(x01, x

0
2)

=

[
2 cos(2x01 + x02) cos(2x01 + x02)

(x02 − 1) x01

]
.

For (x01, x
0
2) = (0, n1π) with n1 even,

A(x01, x
0
2) =

[
2 1

n1π − 1 0

]
which has the characteristic equation s2 − 2s− (n1π− 1). This corresponds to
a saddle point for n1 ≥ 1, and an unstable node for n1 = 0.

For (x01, x
0
2) = (0, n1π) with n1 odd,

A(x01, x
0
2) =

[ −2 −1

n1π − 1 0

]
which has the characteristic equation s2 + 2s+ (nπ − 1). This corresponds to
an stable focus for all n1 ≥ 0.

For (x01, x
0
2) = ((n2π − 1)/2,−1) with n2 even,

A(x01, x
0
2) =

[
2 1

0 (n2π − 1)/2

]
which has the characteristic equation (s−2)(s−(n2π−1)/2). This corresponds
to an unstable node for all n2 ≥ 1.

For (x01, x
0
2) = ((n2π − 1)/2,−1) with n2 odd,

A(x01, x
0
2) =

[−2 −1

0 (n2π − 1)/2

]
which has the characteristic equation (s+2)(s−(n2π−1)/2). This corresponds
to a saddle point for all n2 ≥ 0.
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3. Consider the following system

ẋ = y − x
ẏ = x(1− z)− y
ż = xy − z .

Use the candidate Lyapunov function

V (x, y, z) =
x2 + y2 + z2

2

to prove global asymptotic stability of the origin (0, 0, 0). (2 p)

Solution
We have to check if V is Lyapunov function. Clearly, V is positive definite and
radially unbounded. On the other hand,

V̇ = xẋ+ yẏ + zż

= x(y − x) + y((1− z)− y) + (xy − z)z
= −x2 − y2 + 2xy

= −(x− y)2 − z2
≤ 0 ,

so that V has nonpositive drift. Now, observe that V̇ (x, y, z) = 0 on the whole
set

E = {(x, y, z) : x = y, z = 0} .
Therefore, Lypaunov’s theorems allow us to prove only local stability of the
origin. For asymptotic stability we need to resort to La Salle’s theorem. For
that, we look for the largest invariant subset M ⊆ E. Observe that, for every
(x, y, z) ∈ E, ż = xy−x = x2. Hence ż > 0 for all (x, y, z) ∈ E except the origin
(0, 0, 0). It follows that the largest invariant subset of E is M = {(0, 0, 0)}, so
that LaSalle’s threorem guarantees global asymptotic stability of the origin.
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4. Consider the following system obtained as the closed-loop interconnection of a
linear time invariant system with transfer function G(s) = K/(s + 1)2, where
K > 0 is a positive constant, with a static nonlinearity f(u) = u(1 + cosu)

u(1 + cosu)

−K
(s+ 1)2

a. Determine the values of K for which the small-gain theorem guarantees that
the closed-loop interconnected system in the figure above is stable. (2 p)

b. Determine the values of K for which the circle criterion guarantees that the
closed-loop interconnected system in the figure above is stable. (2 p)

Solution

a. Since maxu |1 + cosu| = 2, one gets that the gain of f(u) is

γf = sup
u

|f(u)|
|u| = 2 .

On the other hand, the gain of the LTI system with transfer function G(s) is

γG = sup
ω
|G(iω)| = sup

ω

K

1 + ω2
= K .

The small-gain theorem guarantees stability of closed-loop interconnection sys-
tem when 2K = γf · γG < 1, i.e., when K < 1/2.

b. Observe that 0 ≤ f(u) ≤ 2u for u ≥ 0, while 2u ≤ f(u) ≤ 0 for u ≤ 0.
Hence, the nonlinearity belongs to the sector [0, 2]. Since the LTI system with
transfer function G(s) = K

(s+1)2
is stable for all values of K, the circle criterion

guarantees stability of the closed loop interconnection if the Nyquist curve of
G(s) lies on the right-hand side of the line Re (z) = −1/2.

We thus want to find the values of K such that

min
ω

Re G(iω) > −1/2.

This problem is relatively straight-forward to solve analytically,

Re G(iω) = Re
K

(1 + iω)2

= Re
(1− iω)2

(1 + ω2)2
K

= Re
1− ω2 − 2iω

(1 + ω2)2
K

=
1− ω2

(1 + ω2)2
K =: h(ω)K
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To find the minimum of h(ω) we find its stationary points as roots to h′(ω) = 0,

h′(ω) =
−2ω

(1 + ω2)2
+
−4ω(1− ω2)

(1 + ω2)3

=
−2ω(1 + ω2)− 4ω(1− ω2)

(1 + ω2)3

= −2ω
3− ω2

(1 + ω2)3

and it is seen that h(ω) attains its minimal value for ω =
√

3, with h(
√

3) =
−1/8. Thus minω Re G(iω) = −K/8, and K < 4 that guarantees that the
closed loop is stable.

6



Nonlinear Control and Servo Systems, January 13, 2016

x0
G(s)

−ψ(x, ẋ)

Σ

Figure 1 Negative feedback interconnection of Problem 5.

5. The so-called Van der Pol equation is given by

ẍ+ (x2 − 1)ẋ+ x = 0. (1)

a. Show that the system (1) can be written as the negative feedback intercon-
nection of a linear time-invariant system G(s) and a non-linearity ψ(x, ẋ) as
indicated in Figure 1, where

G(s) =
1

s2 − s+ 1
ψ(x, ẋ) = x2ẋ

(1 p)

b. Using its definition, verify that the describing function of ψ(x, ẋ) is given by

N(A,ω) =
iA2ω

4

(1.5 p)

c. Use the describing function method to compute the frequency and amplitude of
all possible limit-cycles (with amplitude greater than 0) and determine whether
they are locally stable or not. Hint: for determining stability consider the poles

of the closed-loop system Gcl =
Go

1 +G0
, where Go(iω) := N(A,ω)G(iω).

(1.5 p)

Solution

a. The system can be divided into the sum of a linear and non-linear part

(ẍ− ẋ+ x) + x2ẋ = 0⇔ (ẍ− ẋ+ x) = −ψ(x, ẋ) (2)

According to block-diagram 1 it holds that−ψ(x, ẋ) is the input ofG(s). Hence,
by denoting with U(s) the input of G(s) and Laplace-transforming (2) we get

X(s)(s2 − s+ 1) = U(s)⇔ X(s)

U(s)
=

1

s2 − s+ 1
= G(s). (3)
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b. N(A,ω) =
b1(ω) + ia1(ω)

A
, where

a1 =
ω

π

∫ 2π
ω

0
A3 sin2(ωt) cos2(ωt)ωdt =

ω

π

∫ 2π

0
A3 sin2(φ) cos2(φ)dφ =

A3ω

4

b1 =
ω

π

∫ 2π
ω

0
A3 sin3(ωt) cos(ωt)ωdt =

ω

π

∫ 2π

0
A3 sin3(φ) cos(φ)dφ = 0

and therefore N(A,ω) =
iA2ω

4
.

c. In order to have a limit-cycle it has to be fulfilled that

N(A,ω)G(iω) = −1⇔ iA2ω

4
= −ω2 − iω + 1

Hence, ω = 1 and A = 2. For determining the stability we look at the poles

the closed loop system Gcl =
Go

1 +G0
, where Go(iω) := N(A,ω)G(iω), i.e.

Go(s) =
A2s

4(s2 − s+ 1)
=:

P (s)

Q(s)

and

Gcl(s) =
P (s)

Q(s) + P (s)
=

A2s

4(s2 − s+ 1) +A2s

Hence, the characteristic equation is given by

s2 −
(

1− A2

4

)
s+ 1 = 0

and therefore

s1/2 =
1

2

(
1− A2

4

)
±
√
−1 +

1

4

(
1− A2

4

)2

Thus, Gcl(s) is asymptotically stable if A > 2 and unstable if A < 2 and
therefore the limit-cycle is stable.

There is another ”limit-cycle” for the equilibrium point x = 0, however the
amplitude is then 0.
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6. Consider the sliding mode control system

ẋ1 = 3x1 + 2x2

ẋ2 = 2x1 + x2 − 2u
u =

{
+1 if x1 + x2 > 0

−1 if x1 + x2 < 0
.

a. Determine the sliding set. (1.5 p)

b. Find the sliding dynamics and determine whether the origin is a stable equi-
librium for it. Motivate your answer. (1.5 p)

Solution

a. Let σ(x1, x2) = x1 + x2 and

f+(x1, x2) =

[
3x1 + 2x2

2x1 + x2 − 2

]
, f−(x1, x2) =

[
3x1 + 2x2

2x1 + x2 + 2

]
.

Then, the sliding surface is Σ = {(x1, x2) : σ(x) = 0} = {(x1, x2) : x1 = −x2},
and the sliding set is the subset of Σ where

f+(x1, x2) · ∇σ(x1, x2) < 0 , f+(x1, x2) · ∇σ(x1, x2) > 0 .

On the surface Σ the inequality above reduce to

3x1+2x2+2x1+x2−2 = 2x1−2 < 0 , 3x1+2x2+2x1+x2+2 = 2x1+2 > 0 ,

so that the sliding set is

{(x1, x2) : x1 = −x2, −1 < x1 < 1} .

b. The sliding dynamics on the sliding set is obtained as

ẋ = αf+(x) + (1− α)f−(x) ,

where α is such that(
αf+(x) + (1− α)f−(x)

)
· ∇σ(x1, x2) = 0 .

On the sliding set, the equation above reduces to 2x1− 2α+ 2(1−α) = 0 , i.e.,

α = (1 + x1)/2 .

By substituting this value of α we obtain the sliding dynamics

ẋ1 = x1

ẋ2 = x2 ,

which is unstable.
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7. Consider the following optimal flow control problem. There are two cells con-
taining quantities x1 kg and x2 kg, respectively, of the same incompressible
fluid. Cell 1 gets a constant positive external inflow of rate v = 1 kg/s. The
two cells are connected in such a way that the fluid can flow from cell 1 to cell
2 at a controlled flow rate of u kg/s that satisfies the constraints 0 ≤ u ≤ C
where C > 0 is the maximum flow capacity. Cell 2 has an outflow towards the
external world of rate w = x2. The law of mass conservation then gives the
following dynamical equations:

ẋ1 = 1− u , ẋ2 = u− x2 .

Given that the initial quantities of fluid in the two cells, x1(0) ≥ 0 and x2(0) ≥
0, are known, we are interested in solving the following open-loop optimal
control problem:

min
u(t): 0≤t≤1

∫ 1

0
(αx1(t) + x2(t))dt ,

where α > 0 is a parameter.

a. Find the Hamiltonian of the problem. (1 p)

b. Determine the adjoint equations and the final time conditions on the co-state
variables. (1 p)

c. Solve the adjoint equations. (1 p)

d. Use the Pontryagin maximum principle to determine the optimal control u∗(t)
when α = 1, α = 3/4, and α = 1/4. (Bonus: provide a physical justification of
the different solutions obtained in the three different cases.) (2 p)

Solution
This is a classical optimal control problem with two-dimensional dynamics

ẋ1 = f1(x1, x2, u) = 1− u , ẋ2 = f2(x1, x2, u) = u− x2 ,

running cost L(x1, x2, u) = αx1 + x2, no final state cost or constraints, control
space U = [0, C] and given final time tf = 1. Since the final time is given and
there no constraints on the final state, we can use the first formulation of the
Pontryagin maximum principle.

a. The Hamiltonian is given by

H(x1, x2, u, λ1, λ2) = L(x1, x2, u) + λ1f1(x1, x2, u) + λ2f2(x1, x2, u)

= αx1 + x2 + λ1(1− u) + λ2(u− x2)

= αx1 + x2 + λ1 − λ2x2 + (λ2 − λ1)u .

b. The adjoint equations are given by

λ̇1 =
∂H

∂x1
= −α , λ̇2 =

∂H

∂x2
= λ2 − 1 .

Since there are no final costs, the final time conditions on the co-states simply
read

λ1(1) = 0 , λ2(1) = 0 .
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c. The solution of the adjoint equations above gives the following evolution for
the co-states

λ1(t) = α(1− t) , λ2(t) = 1− et−1 .

d. The Pontryagin maximum principle implies that the optimal control satisfies

u∗(t) ∈ arg min
u∈U
{H(x∗1(t), x

∗
2(t), u, λ1(t), λ2(t))} = arg min

u∈[0,C]
{(λ2(t)− λ1(t))u} .

Hence,

u∗(t) =

{
C if λ1(t) > λ2(t)

0 if λ1(t) < λ2(t)

For α = 1, one has that

λ2(t) = 1− et−1 < 1− t = λ1(t) , ∀t ∈ [0, 1) ,

so that
u∗(t) = C , ∀t ∈ [0, 1]

is the optimal control. For α = 1/4, one has that

λ2(t) = 1− et−1 > 1

4
(1− t) = λ1(t) , ∀t ∈ [0, 1] ,

so that
u∗(t) = 0 , ∀t ∈ [0, 1]

is the optimal control. Finally, for α = 3/4, there exists 0 < t∗ < 1 such that

λ2(t) = 1− et−1 < 3

4
(1− t) = λ1(t) , ∀t ∈ [0, t∗) ,

λ2(t) = 1− et−1 > 3

4
(1− t) = λ1(t) , ∀t ∈ (t∗, 1] ,

so that the optimal control satisfies

u∗(t) =

{
C if 0 ≤ t < t∗

0 if t∗ < t ≤ 1 .

To get a physical interpretation, observe that the law of mass conservation
gives ẋ1 + ẋ2 = 1 − x2, i.e., the growth rate of the total quantity of fluid in
the two cells is equal to the external inflow v = 1 minus the external outflow
w = x2. When α = 1, the running cost L(x1, x2, u) = x1 + x2 has derivative
L̇ = 1− x2. Hence, in this case, there is an incentive in pushing as much fluid
as possible to the second cell, so that the growth rate of the running cost is as
little as possible. For values of α smaller than 1, there is a tradeoff between the
benefit of moving fluid from the first cell to the second one, so that there is a
larger outflow from the cells towards the external world, and the higher cost
x2 of keeping the fluid in cell 2 as opposed to the cost αx1 keeping it cell 1.
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