
Lecture 9 — Nonlinear Control Design

I Exact-linearization
I Lyapunov-based design

I Lab 2
I Adaptive control

I Sliding modes control

Literature: [Khalil, ch.s 13, 14.1,14.2] and [Glad-Ljung,ch.17]



Course Outline

Lecture 1-3 Modelling and basic phenomena
(linearization, phase plane, limit cycles)

Lecture 4-6 Analysis methods
(Lyapunov, circle criterion, describing functions)

Lecture 7-8 Common nonlinearities
(Saturation, friction, backlash, quantization)

Lecture 9-13 Design methods
(Lyapunov methods, optimal control)

Lecture 14 Summary



Exact Feedback Linearization

Idea:
Find state feedback u = u(x, v) so that the nonlinear system

ẋ = f(x) + g(x)u

turns into the linear system

ẋ = Ax+Bv

and then apply linear control design method.



Exact linearization: example [one-link robot]

l

t
th

m

m`2θ̈ + dθ̇ +m`g cos θ = u

where d is the viscous damping.
The control u = τ is the applied torque
Design state feedback controller u = u(x) with x = (θ, θ̇)T



Introduce new control variable v and let

u = m`2v + dθ̇ +m`g cos θ

Then
θ̈ = v

Choose e.g. a PD-controller

v = v(θ, θ̇) = kp(θref − θ)− kdθ̇

This gives the closed-loop system:

θ̈ + kdθ̇ + kpθ = kpθref

Hence, u = m`2[kp(θ − θref)− kdθ̇] + dθ̇ +m`g cos θ



Multi-link robot (n-joints)

x

y

z

u

phi

theta

General form

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = u, θ ∈ Rn

Called fully actuated if n indep. actuators,

M n× n inertia matrix, M =MT > 0

Cθ̇ n× 1 vector of centrifugal and Coriolis forces
G n× 1 vector of gravitation terms



Computed torque

The computed torque
(also known as ”Exact linearization”, ”dynamic inversion” , etc. )

u =M(θ)v + C(θ, θ̇)θ̇ +G(θ)

v = Kp(θref − θ)−Kdθ̇,
(1)

gives closed-loop system

θ̈ +Kdθ̇ +Kpθ = KpθRef

The matrices Kd and Kp can be chosen diagonal (no cross-terms)
and then this decouples into n independent second-order equations.



Lyapunov-Based Control Design Methods

ẋ = f(x, u)

I Select Lyapunov function V (x) for stability verification

I Find state feedback u = u(x) that makes V decreasing

I Method depends on structure of f

Examples are energy shaping as in Lab 2 and, e.g., Back-stepping
control design, which require certain f discussed later.



Lab 2 : Energy shaping for swing-up control

[movie]

Use Lyapunov-based design for swing-up control.



Lab 2 : Energy shaping for swing-up control

Rough outline of method to get the pendulum to the upright
position

I Find expression for total energy E of the pendulum (potential
energy + kinetic energy)

I Let En be energy in upright position.

I Look at deviation V = 1
2(E − En)

2 ≥ 0

I Find ”swing strategy” of control torque u such that V̇ ≤ 0



Example of Lyapunov-based design

Consider the nonlinear system

ẋ1 = −3x1 + 2x1x
2
2 + u (2)

ẋ2 = −x32 − x2,

Find a nonlinear feedback control law which makes the origin
globally asymptotically stable.
We try the standard Lyapunov function candidate

V (x1, x2) =
1

2

(
x21 + x22

)
,

which is radially unbounded, V (0, 0) = 0, and
V (x1, x2) > 0 ∀(x1, x2) 6= (0, 0).



Example - cont’d

V̇ = ẋ1x1 + ẋ2x2 = (−3x1 + 2x1x
2
2 + u)x1 + (−x32 − x2)x2

= −3x21 − x22+ux1+2x21x
2
2 − x42

We would like to have

V̇ < 0 ∀(x1, x2) 6= (0, 0)

Inserting the control law, u = −2x1x22, we get

V̇ = −3x21−x22−2x21x22 + 2x21x
2
2︸ ︷︷ ︸

=0

−x42 = −3x21−x22−x42 < 0, ∀x 6= 0



Consider the system

ẋ1 = x32

ẋ2 = u
(3)

Find a globally asymptotically stabilizing control law u = u(x).
Attempt 1: Try the standard Lyapunov function candidate

V (x1, x2) =
1

2

(
x21 + x22

)
,

which is radially unbounded, V (0, 0) = 0, and
V (x1, x2) > 0 ∀(x1, x2) 6= (0, 0).

V̇ = ẋ1x1 + ẋ2x2 = x32 · x1 + u · x2 = x2 (x
2
2x1 + u)︸ ︷︷ ︸
−x2

= −x22 ≤ 0

where we chose
u = −x2 − x22x1



However V̇ = 0 as soon as x2 = 0 (Note: x1 could be anything).
According to LaSalle’s theorem the set
E = {x|V̇ = 0} = {(x1, 0)} ∀x1
What is the largest invariant subset M ⊆ E?
Plugging in the control law u = −x2 − x22x1, we get

ẋ1 = x32

ẋ2 = −x2 − x22x1
(4)

Observe that if we start anywhere on the line {(x1, 0)} we will stay
in the same point as both ẋ1 = 0 and ẋ2 = 0, thus M=E and we
will not converge to the origin, but get stuck on the line x2 = 0.

Draw phase-plot with e.g., pplane and study the behaviour.



Attempt 2:

ẋ1 = x32

ẋ2 = u
(5)

Try the Lyapunov function candidate

V (x1, x2) =
1

2
x21 +

1

4
x42,

which satisfies

I V (0, 0) = 0

I V (x1, x2) > 0, ∀(x1, x2) 6= (0, 0).

I radially unbounded,

I compute

V̇ = ẋ1x1 + ẋ2x
3
2 = x32(x1 + u) = −x42 ≤ 0

↑
if we use u = −x1 − x2



With
u = −x1 − x2

we get the dynamics

ẋ1 = x32

ẋ2 = −x1 − x2
(6)

V̇ = 0 if x2 = 0, thus

E = {x|V̇ = 0} = {(x1, 0)∀x1}

However, now the only possibility to stay on x2 = 0 is if x1 = 0, (
else ẋ2 6= 0 and we will leave the line x2 = 0).
Thus, the largest invariant set

M = (0, 0)

According to the Invariant Set Theorem (LaSalle) all solutions will
end up in M and so the origin is GAS.
Draw phase-plot with e.g., pplane and study the behaviour.



Adaptive Noise Cancellation Revisited

u

g1

g2

x

xh

xt

+

-

ẋ+ ax = bu

˙̂x+ âx̂ = b̂u

Introduce x̃ = x− x̂, ã = a− â, b̃ = b− b̂.
Want to design adaptation law so that x̃→ 0



Let us try the Lyapunov function

V =
1

2
(x̃2 + γaã

2 + γbb̃
2)

V̇ = x̃ ˙̃x+ γaã ˙̃a+ γbb̃
˙̃
b =

= x̃(−ax̃− ãx̂+ b̃u) + γaã ˙̃a+ γbb̃
˙̃
b = −ax̃2

where the last equality follows if we choose

˙̃a = − ˙̂a =
1

γa
x̃x̂

˙̃
b = − ˙̂b = − 1

γb
x̃u

Invariant set: x̃ = 0.
This proves that x̃→ 0.
(The parameters ã and b̃ do not necessarily converge: u ≡ 0.)



A Control Design Idea, and a Problem

Assume V (x) = xTPx, P > 0, represents the energy of

ẋ = Ax+Bu, u ∈ [−1, 1]

Idea: Choose u such that V decays as fast as possible

V̇ = xT (ATP +AP )x+ 2BTPx · u
u = −sgn(BTPx)

The following situation might then occur (“system is not
Lipschitz”)

f+

f-

s



Sliding Modes

ẋ =

{
f+(x), σ(x) > 0

f−(x), σ(x) < 0

f+

f-

s-

s+

The switching set/ sliding set is where σ(x) = 0 and f+ and f−

point towards σ(x) = 0.

The switching set/ sliding set is given by x such that

σ(x) = 0

∂σ

∂x
f+ = (∇σ)f+ < 0

∂σ

∂x
f− = (∇σ)f− > 0

Note: If f+ and f− point “in the same direction” on both sides of the

set σ(x) = 0 then the solution curves will just pass through and this

region will not belong to the sliding set.



Sliding Mode

If f+ and f− both points towards σ(x) = 0, what will happen
then?

The sliding dynamics are ẋ = αf+ + (1− α)f−, where α is

obtained from
dσ

dt
=
∂σ

∂x
· ẋ = 0 on {σ(x) = 0}.

f+

f-

s-

s+

More precisely, find α such that the components of f+ and f−

perpendicular to the switching surface cancel: αf+⊥ + (1− α)f−⊥ = 0 The

resulting dynamics is then the sum of the corresponding components

along the surface.



4 minute exercise

ẋ =

[
0 −1
1 −1

]
x+

[
1
1

]
u = Ax+Bu

u = −sgnσ(x) = −sgnx2 = −sgn(Cx)

which means that

ẋ =

{
Ax−B, x2 > 0

Ax+B, x2 < 0

Determine the switching set and the sliding dynamics.



4 minute exercise — Solution

ẋ1 = −x2 + u = −x2 − sgn(x2)

ẋ2 = x1 − x2 + u = x1 − x2 − sgn(x2)

f+ =

[
−x2 − 1

x1 − x2 − 1

]
f− =

[
−x2 + 1

x1 − x2 + 1

]

σ(x) = x2 = 0 ⇒ x2 = 0

∂σ

∂x
f+ =

[
0 1

]
f+ = x1 − x2 − 1 < 0 ⇒ x1 < 1

∂σ

∂x
f− =

[
0 1

]
f− = x1 − x2 + 1 > 0 ⇒ x1 > −1

We will thus have a sliding set for {−1 < x1 < 1, x2 = 0}



The normal projections of (f+, f−) to σ(x) = x2 = 0 are

f+⊥ =

[
0

x1 − x2 − 1

]
f−⊥ =

[
0

x1 − x2 + 1

]
Find α ∈ [0, 1] such that αf+⊥ + (1− α)f−⊥ = 0 on {x2 = 0}

α(x1 − x2 − 1) + (1− α)(x1 − x2 + 1) = 0

⇒

α =
x1 + 1

2
as x2 = 0

Note: α ∈ [0, 1]⇒ x1 ∈ [−1, 1]



The sliding dynamics are the given by

ẋ = αf+ + (1− α)f−[
ẋ1
ẋ2

]
= α

[
−x2 − 1

x1 − x2 − 1

]
+ (1− α)

[
−x2 + 1

x1 − x2 + 1

]
=

[
−2α− x2 − 1

0

]
=

[
−x1
0

]
where we inserted x2 = 0 and α = x1+1

2

We see that on the sliding set {−1 < x < 1, x2 = 0} we have

ẋ1 = −x1
ẋ2 = 0

For any initial condition starting on the sliding set, there will be
exponential convergence to x1 = x2 = 0.



For small x2 we have
ẋ2(t) ≈ x1 − 1,

dx2
dx1

=
dx2/dt

dx1/dt
≈ 1− x1 x2 > 0

ẋ2(t) ≈ x1 + 1,
dx2
dx1

=
dx2/dt

dx1/dt
≈ 1 + x1 x2 < 0

This implies the following behavior

>

=

<

−1 +1



Sliding Mode Dynamics

The dynamics along the sliding set in σ(x) = 0 can also be
obtained by finding u = ueq ∈ [−1, 1] such that σ̇(x) = 0.
ueq is called the equivalent control.



Example (cont’d)

Finding u = ueq such that σ̇(x) = ẋ2 = 0 gives

0 = ẋ2 = x1 − x2︸︷︷︸
=0

+ueq = x1 + ueq

Insert ueq = −x1 in the equation for ẋ1:

ẋ1 = − x2︸︷︷︸
=0

+ueq = −x1

gives the dynamics on the sliding set (where x2 = 0)

Remember: ueq ∈ [−1, 1] so can only satisfy ueq = −x1 on the interval

x1 ∈ [−1, 1]!



Equivalent Control

Assume

ẋ = f(x) + g(x)u

u = −sgnσ(x)

has a sliding set on σ(x) = 0. Then, for x(t) staying on the sliding
set we should have

0 = σ̇(x) =
∂σ

∂x
· dx
dt

=
∂σ

∂x

(
f(x) + g(x)u

)
The equivalent control is thus given by solving

ueq = −
(
∂σ

∂x
g(x)

)−1∂σ
∂x
f(x)

for all those x such that σ(x) = 0 and ∂σ
∂xg(x) 6= 0.



Equivalent Control for Linear System

ẋ = Ax+Bu

u = −sgnσ(x) = −sgn(Cx)

Assume CB invertible. The sliding set lies in σ(x) = Cx = 0.

0 = σ̇(x) =
dσ

dx

(
f(x) + g(x)u

)
= C

(
Ax+Bueq

)
gives CBueq = −CAx.
Example (cont’d) For the previous system

ueq = −(CB)−1CAx = −(x1 − x2)/1 = −x1,

because σ(x) = x2 = 0. Same result as above.



More on the Sliding Dynamics

If CB > 0 then the dynamics along a sliding set in Cx = 0 is

ẋ = Ax+Bueq =

(
I − (CB)−1BC

)
Ax,

One can show that the eigenvalues of (I − (CB)−1BC)A equals
the zeros of G(s) = C(sI −A)−1B. (exercise for PhD students)



Design of Sliding Mode Controller

Idea: Design a control law that forces the state to σ(x) = 0.
Choose σ(x) such that the sliding mode tends to the origin.
Assume system has form

d

dt


x1
x2
...
xn

 =


f1(x) + g1(x)u

x1
...

xn−1

 = f(x) + g(x)u

Choose control law

u = −p
T f(x)

pT g(x)
− µ

pT g(x)
sgnσ(x),

where µ > 0 is a design parameter, σ(x) = pTx, and
pT =

[
p1 . . . pn

]
represents a stable polynomial.



Sliding Mode Control gives Closed-Loop Stability

Consider V(x) = σ2(x)/2 with σ(x) = pTx. Then,

V̇ = σ(x)σ̇(x) = xT p
(
pT f(x) + pT g(x)u

)
With the chosen control law, we get

V̇ = −µσ(x)sgnσ(x) ≤ 0

so σ(x)→ 0 as t→ +∞. In fact, one can prove that this occurs
in finite time.

0 = σ(x) = p1x1 + · · ·+ pn−1xn−1 + pnxn

= p1x
(n−1)
n + · · ·+ pn−1x

(1)
n + pnx

(0)
n

where x(k) denote time derivative. P stable gives that x(t)→ 0.

Note: V by itself does not guarantee stability. It only guarantees

convergence to the line {σ(x) = 0} = {pTx = 0}.



Time to Switch

Consider an initial point x such that σ0 = σ(x) > 0. Then

σ(x)σ̇(x) = −µσ(x)sgnσ(x)

so
σ̇(x) = −µ

Hence, the time to the first switch is

ts =
σ0
µ
<∞

Note that ts → 0 as µ→∞.



Example—Sliding Mode Controller

Design state-feedback controller for

ẋ =

[
1 0
1 0

]
x+

[
1
0

]
u

y =
[
0 1

]
x

Choose p1s+ p2 = s+ 1 so that σ(x) = x1 + x2. The controller is
given by

u = −p
TAx

pTB
− µ

pTB
sgnσ(x)

= −2x1 − µsgn(x1 + x2)



Phase Portrait

Simulation with µ = 0.5. Note the sliding set is in σ(x) = x1 + x2.

−2 −1 0 1 2

−1

0

1

x2

x1

s



Time Plots

Initial condition
x(0) =

[
1.5 0

]T
.

Simulation agrees well with
time to switch

ts =
σ0
µ

= 3

and sliding dynamics

ẏ = −y

x2

x1

u



The Sliding Mode Controller is Robust

Assume that only a model ẋ = f̂(x) + ĝ(x)u of the true system
ẋ = f(x) + g(x)u is known. Still, however,

V̇ = σ(x)

[
pT (fĝT − f̂gT )p

pT ĝ
− µp

T g

pT ĝ
sgnσ(x)

]
< 0

if sgn(pT g) = sgn(pT ĝ) and µ > 0 is sufficiently large.

Closed-loop system is quite robust against model errors!

(High gain control with stable open loop zeros)



Implementation
A relay with hysteresis or a smooth (e.g. linear) region is often
used in practice.
Choice of hysteresis or smoothing parameter can be critical for
performance
More complicated structures with several relays possible. Harder to
design and analyze.



Next Lectures

I L10–L12: Optimal control methods

I L13: Other synthesis methods

I L14: Course summary



Next Lecture

I Optimal control

Read chapter 18 in [Glad & Ljung] for preparation.


