Lecture 5 — Input—output stability

or

“How to make a circle out of the point —1 + 0z, and different
ways to stay away from it ...”
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Course Outline

Lecture 1-3  Modelling and basic phenomena
(linearization, phase plane, limit cycles)

Lecture 4-6  Analysis methods
(Lyapunov, circle criterion, describing functions)

Lecture 7-8 Common nonlinearities
(Saturation, friction, backlash, quantization)

Lecture 9-13 Design methods
(Lyapunov methods, Backstepping, Optimal control)

Lecture 14 Summary
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Today’s Goal

To understand

@ signal norms
@ system gain
@ bounded input bounded output (BIBO) stability

To be able to analyze stability using

@ the Small Gain Theorem,
@ the Circle Criterion,
@ Passivity

Material

@ [Glad & Ljung]: Ch 1.5-1.6, 12.3 [Khalil]l: Ch 5-7.1
@ lecture slides
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For what G(s) and f(-) is the closed-loop system stable?

@ Lur'e and Postnikov’s problem (1944)

@ Aizerman’s conjecture (1949) (False!)

@ Kalman’s conjecture (1957) (False!)

@ Solution by Popov (1960) (Led to the Circle Criterion)
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Gain

Idea: Generalize static gain to nonlinear dynamical systems

The gain y of S measures the largest amplification from « to y

Here S can be a constant, a matrix, a linear time-invariant
system, a nonlinear system, etc

Question: How should we measure the size of u and y?
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Norms

A norm || - || measures size.

A norm is a function from a space Q to R*, such that for all
x,y € Q

@ |x|>0 and |x||=0 < x=0

O Jlx+yll < [l + Iyl

9 |lax| = |a|-||x||, foralld € R

Examples
Euclidean norm: ||x|| = \/m
Max norm: ||x|| = max{|x1],...,|x,|}
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Signal Norms

A signal x(¢) is a function from R+ to RY.
A signal norm is a way to measure the size of x().

Examples
2-norm (energy norm): ||x|lz =/ [o~ |x(2)|2dt
sup-norm: [|x||eo = sup;er+ |x(2)|

The space of signals with ||x||z < co is denoted Ls.
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Parseval’'s Theorem

Theorem If x,y € Ly have the Fourier transforms

X (io) = /0 Ty, Y(io) = /0 " oty (1)t

then I ANrd
VL ()x(t)dt = — / Y*(i0)X (i0)do.
0 2z —00
In particular
2 y 2 1 = o 2
lllz= [ |e(@)Fdt=5_ | [X(i0)]"dw.
0 T J—co

||lx|]|e < oo corresponds to bounded energy.
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A system S is a map between two signal spaces: y = S(u).

u Y

—_— S =

ol _ _ IS@)ls

The gain of S is defined as y(S) = sup =
ue Ly ||u||2 u€e Ly ”u”2

Example The gain of a static relation y(¢) = au(t) is

loullz _ - lelull

y(a) = = |et]

u€ Ly ||u||2 _ueLg ||u||2
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Example—Gain of a Stable Linear System

N G)]|

¥(G) = sup IGull: _ .y G (iw)|
wer, llz wc(0.00)

Proof: Assume |G(iw)| < K for w € (0,00). Parseval’s theorem

gives
biz= 2 [ 1Y(o)Pdo
2% J_ oo
1 0 . .
= o= [ 161U 0)Pdo < K?|ul?

This proves that y(G) < K. See [Khalil, Appendix C.10] for a
proof of the equality.
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2 minute exercise: Show that y(S1S2) < 7(S1)7(S2).

—] S S; —
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Example—Gain of a Static Nonlinearity

|f(x)| < Kl|x|, f(x*)=Kx*
Kx
f(x)

u(t) y(t)

Iyl = /0 £2(u(t))dt < /0 K22 (t)dt = K2|ull2
x¥ 0<t<1
foru(t) = { 0 t>_1_ one has ||y||z = ||Kull2 = K||u||2

N 7(f) = sup ||||y||2 —
ue Ly u||2
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BIBO Stability

u y y
—| s 7(5) = sup 1112
ue L, llull2
Definition

S is bounded-input bounded-output (BIBO) stable if y(S) < oo.

Example: If x = Ax is asymptotically stable then
G(s) = C(sI — A)~'B + D is BIBO stable.
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The Small Gain Theorem

ri €1
7 S

€2 rg
So —\

Theorem
Assume S; and S, are BIBO stable. If

Y(S1)7(S2) <1

then the closed-loop map from (r1,r2) to (e1, e2) is BIBO stable.
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“Proof” of the Small Gain Theorem

Existence of solution (e, e2) for every (r1,r2) has to be verified
separately. Then

llexll2 < llr1ll2 + ¥ (S2)lllrellz + ¥ (S1)lle1llz]
gives
I71ll2 + ¥ (S2)lIrall2
1—y(S2)y(S1)

7(S2)7(S1) <1, [[r1ll2 < oo, [[r2ll2 < oo give |ler]l2 < co.
Similarly we get

lle1ll2 <

lIrallz + ¥ (S1)llrll2
1—7(S1)7(S2)

lleall2 <

S0 also ey is bounded.
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Linear System with Static Nonlinear Feedback (1)

Ky
r > G(s) X f()
y
()
2
G(s):m and OS%SK

7(G) =2and 7(f) < K.

The small gain theorem gives that K € [0,1/2) implies BIBO
stability.
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The Nyquist Theorem

o tEw R
s (S 5708 Nl

Theorem

The closed loop system is stable iff the number of
counter-clockwise encirclements of —1 by G(Q) (note: @
increasing) equals the number of open loop unstable poles.
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The Small Gain Theorem can be Conservative

Let f(y) = Ky for the previous system.

The Nyquist Theorem proves stability when K € [0, ).
The Small Gain Theorem proves stability when K € [0,1/2).
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The Circle Criterion

Casel: 0< ki <k <

koy f(y)
y k1y ~f,\
y : 2

~J

o

Theorem Consider a feedback loop with y = Gu and
u = —f(y) +r. Assume G(s) is stable and that

0< bk < fg,y) < ko.

If the Nyquist curve of G(s) does not intersect or encircle the
circle defined by the points —1/%; and —1/kg, then the
closed-loop system is BIBO stable from r to y.
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G stable system

@ 0 < k1 < kgo: Stay outside circle
@ 0 =k < ky: Stay to the right of the line Re s = —1/ky
@ k1 < 0 < kg: Stay inside the circle

Other cases: Multiply f and G with —1.

G: Unstable system
To be able to guarantee stability, 21 and ko must have same
sign (otherwise unstable for £ = 0)

@ 0 < k1 < kgo: Encircle the circle p times counter-clockwise
(if @ increasing)

@ k1 < kg < 0: Encircle the circle p times counter-clockwise
(if @ increasing)

where p=number of open loop unstable poles
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Linear System with Static Nonlinear Feedback (2)

Ky
f() :

0.5 1
y oK

-0.5

-1 -05 0 0.5 1 15 2

The “circle” is defined by —1/k; = —cc and —1/ky = —1/K.

min Re G(iw) = —1/4

so the Circle Criterion gives that if K € [0,4) the system is
BIBO stable.
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Proof of the Circle Criterion

Letk = (k1 + k2)/2 and f(y) = f(y) — ky. Then

‘f(y)'<k2—k1 _-R
y |7 2 '

?1 =r —krg
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Proof of the Circle Criterion (cont'd)

+-O—{G(s) ;
: O
Lo |

_f(.)F@F

1
G(iw)
G

SGT gives stability for |G(iow)|R < 1 with G = T hG

1 1
s IG(iw)| ‘G(iw)

+4

Transform this expression through z — 1/z.
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Lyapunov revisited

Original idea: “Energy is decreasing”

x = f(x), x(0) = xp
V(x(T)) = V(x(0)) < 0
(+some other conditions on V)

New idea: “Increase in stored energy < added energy”

x = f(x,u), x(0) = xo
y = h(x)

T
V(x(T)) = V(x(0)) < /0 ohu) dt (@
external power
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Will assume the external power has the form ¢(y,u) = yTu.
Only interested in BIBO behavior. Note that

3V > 0 with V(x(0)) = 0 and (1)
<~

T
/ yTudt> 0
0

Motivated by this we make the following definition
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Passive System

Definition The system S is passive from u to y if

T
/yTudt > 0, foralluandall T >0
0

and strictly passive from u to y if there 3¢ > 0 such that

T
/ Yudt > e(yf3 +ufz), foralluandall T >0
0
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A Useful Notation

Define the scalar product

AW P S

T
G = [ 5" (Oule)de
Cauchy-Schwarz inequality:

@ udr < |ylrlulr

where |y|7 = \/(y,y)r. Note that |y|., = ||¥||2.
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2 minute exercise

Assume S7 and Sy are passive. Are then parallel connection
and series connection passive? How about inversion; S71?

S

u | "l v (55 1
2=
P y
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2 minute exercise

Assume S; and Sy are passive. Are then parallel connection
and series connection passive? How about inversion; Sl—l’?

S1 —
= o~ “Is Hs
Sy !
Not passive
<u’y> = <u’Sl(u)> + (u, SZ(u)> > 0 Eg’ Sl — S2 = %
u o1 y

(u,y) = (S1(),) >0



Feedback of Passive Systems is Passive

ry €1 Y1
S Sl T
Y2 €3 ra
Ss ~—

If S; and S, are passive, then the closed-loop system from
(r1,r2) to (y1,¥2) is also passive.

Proof: ()7 = (y1,71)7 + Y2, r2)T
= (y1,71 —y2)7 + (Y2, T2 + Y1)T
= (y1,en)r + (¥2,e2)7 > 0
Hence, {y,r)7 > 0if (y1,e1)r > 0 and (yg,ea)r >0
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Passivity of Linear Systems

Theorem An asymptotically stable linear system G(s) is
passive if and only if

Re G(iw) > 0, Vo >0
It is strictly passive if and only if there exists € > 0 such that

Re G(iw) > ¢(1 + |G(iw)[?), Vo >0

Example 0

G(s) = S+; is passive and |
strictly passive, iR
G(s) = % is passive but not

strictly passive.
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A Strictly Passive System Has Finite Gain

u y

—_— S B

If S is strictly passive, then y(S) < oo.

Proof: Note that ||y||e = limp_, |y|7-
e(lylz +lulf) < Gu)r < ylr - fulr < Iyll2 - llull

Hence, e|ly|% < ||lyllz - |||, so letting T' — co gives

1
Il < =l
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The Passivity Theorem

r €1 Y1

Y2 €2 ry
So -

Theorem If S; is strictly passive and Ss is passive, then the
closed-loop system is BIBO stable from r to y.
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Proof of the Passivity Theorem

S strictly passive and Sy passive give

e(ly1lF + le1l?) < (1 e1)r + (2, e9)7 = (. 7)1

Therefore

1
[y1l% + (r1 — y2,71 — yo)r < E<y’ ryr

or
1
115 + |y2|3 — 2(y2, ro)r + |r1]F < ;(y, rr

Finally

1 1
ly[% < 2(y2,ra)T + ;(y, ryr < (2 + E> ly|7|r|T

Letting 7" — oo gives ||y|l2 < CJ|r||2 and the result follows
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Passivity Theorem is a “Small Phase Theorem”

H(B_—’ S1 T
20 202 \
91 92
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Example—Gain Adaptation

Applications in channel estimation in telecommunication, noise
cancelling etc.

Process

o |- a@s) L

,,,,,,,,,,,,,,,,,,,,,,,,,,

Adaptation law:

do

7 = re@bm () -y@), 7 >0.
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Gain Adaptation—Closed-Loop System

o) |+ 6s) [
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Gain Adaptation is BIBO Stable

(6 — 6%)u

S is passive (Exercise 4.12), so the closed-loop system is BIBO
stable if G(s) is strictly passive.
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Simulation of Gain Adaptation

1
Let G(s) = — 7 +e 7 =Lu=sinz,0(0) =0andy* =1

Yy Ym
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Storage Function

Consider the nonlinear control system
x = f(x,u), y = h(x)
A storage function is a C! function V : R* — R such that

@ V(0)=0 and V(x) >0, Vx#0
o V(x)<uly, Vxu

Remark:

@ V(T) represents the stored energy in the system

T
°o VT < / yOuBdi+  V(x(0)
——— 0 ———

stored energyatt =T ~———~— stored energy att =0
absorbed energy
vT >0
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Storage Function and Passivity

Lemma: If there exists a storage function V for a system

X = f(x’u)’ y= h(x)

with x(0) = 0, then the system is passive.

Proof: Forall T > 0,

T
o uyr = /0 Y(BOu(t)dt > V(x(T)) — V(2(0)) = V(x(T)) > 0
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Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function

Lyapunov idea: “Energy is decreasing”
V<o
Passivity idea: “Increase in stored energy < Added energy”

VﬁuTy
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Example KYP Lemma

Consider an asymptotically stable linear system
x=Ax+ Bu, y=Cx

Assume there exists positive definite symmetric matrices P, @
such that
ATP+PA=-@Q, and BTP=C

Consider V = 0.5xT Px. Then

V = 0.5(x7 Px 4+ 2T Px) = 0.5xT(ATP + PA)x + u” BT P«

2)
=—05xTQx+uly<uly, x#0

and hence the system is strictly passive. This fact is part of the
Kalman-Yakubovich-Popov lemma.
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Next Lecture

@ Describing functions (analysis of oscillations)
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