Lecture 4 — Lyapunov Stability

Material

@ Glad & Ljung Ch. 12.2
@ Khalil Ch. 4.1-4.3
@ Lecture notes
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Today’s Goal

To be able to

@ prove local and global stability of an equilibrium point using
Lyapunov’s method

@ show stability of a set (e.g., an equilibrium, or a limit cycle)
using La Salle’s invariant set theorem.
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Alexandr Mihailovich Lyapunov (1857-1918)

Master thesis “On the stability of ellipsoidal forms of equilibrium
of rotating fluids,” St. Petersburg University, 1884.

Doctoral thesis “The general problem of the stability of motion,”
1892.
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Lyapunov formalized the idea:

If the total energy is dissipated, then the system must be stable.

Main benefit: By looking at how an energy-like function V (a so
called Lyapunov function) changes over time , we might
conclude that a system is stable or asymptotically stable
without solving the nonlinear differential equation.
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Lyapunov formalized the idea:

If the total energy is dissipated, then the system must be stable.

Main benefit: By looking at how an energy-like function V (a so
called Lyapunov function) changes over time , we might
conclude that a system is stable or asymptotically stable
without solving the nonlinear differential equation.

Main question: How to find a Lyapunov function?
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Start with a Lyapunov candidate V to measure e.g.,

@ "size"! of state and/or output error,

"size" of deviation from true parameters,
energy difference from desired equilibrium,
weighted combination of above

°
°
o
o

Example of common choice in adaptive control

1 i 2
V= 5 (e2 + Ya02 + 7bb2>

(here weighted sum of output error and parameter errors)

1Often a magnitude measure or (squared) norm like |elZ, ...
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Analysis: Check if V is decreasing with time

dv
@ Continuous time: — <0
@ Discrete time: Vik+1)—V(k) <0

Synthesis: Choose, e.g., control law and/or parameter update
law to satisfy V < 0

dV ~A 57,
E = ee+ y,aa + ypbb =

= %(—aX — GF + bu) + Yadd + 7500 = ...
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Analysis: Check if V is decreasing with time

. . av
@ Continuous time: = <0
@ Discrete time: Vik+1)—V(k) <0

Synthesis: Choose, e.g., control law and/or parameter update
law to satisfy V <0

dV ~A 57,
E = ee+ y,aa + ypbb =

= %(—aX — GF + bu) + Yadd + 7500 = ...

If o is constant and @ = a — 4 then @ = —4.

A

Choose update law % in a "good way" to influence Cil—‘t/
(more on this later...)
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A Motivating Example

1 m mi = — bx|x| —kox — k1x
() () damping spring
. b, ko, k1 > 0
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A Motivating Example

1 m mi = — bx|x| —kox — k1x
() () damping spring
. b, ko, k1 > 0

Total energy = kinetic + pot. energy: V = ’”T”Z + [y Fepringds =
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A Motivating Example

¢ = — bilzl — _ 3
1 m mi x|x| —kox — k1x
() () damping spring
. b, ko, k1 > 0

Total energy = kinetic + pot. energy: V = ’”T”Z + f(f Fopringds =
V(x,%) = m?/2 + kox®/2 + k1x*/4 >0,  V(0,0)=0

d
aV(x, %) = mix + koxx + k1x®% = {plugin system dynamics 2}

=-blz> <0, forx#0

2Also referred to evaluate “along system trajectories”.
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A Motivating Example

¢ = — bilzl — _ 3
1 m mi x|x| —kox — k1x
() () damping spring
. b, ko, k1 > 0

Total energy = kinetic + pot. energy: V = ’”T”Z + [y Fepringds =

V(x,%) = m?/2 + kox®/2 + k1x*/4 >0,  V(0,0)=0

d
aV(x, %) = mix + koxx + k1x®% = {plugin system dynamics 2}

=-blz> <0, forx#0

What does this mean?

2Also referred to evaluate “along system trajectories”.
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Stability Definitions

An equilibrium point x* of x = f(x) (i.e., f(x*) =0) is

@ locally stable , if for every R > 0 there exists r > 0, such
that

|[x(0) —x*||<r = |x()—x*||<R, t>0
@ locally asymptotically stable , if locally stable and

l€(0) —x*|| <r = tlim x(t) =«

@ globally asymptotically stable , if asymptotically stable for
all x(0) € R".
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Lyapunov Theorem for Local Stability

Theorem Let x = f(x), f(x*) = 0 where x* is in the interior of
Q C R™. Assume that V : Q — Ris a C! function. If

(1) V(x*) =0
(2) V(x) >0, forall x € Q, x # x*
(3) V(x) < 0 along all trajectories of the system in Q

== x* is locally stable.
Furthermore, if also
(4) V(x) <Oforallx € Q, x # x*

= x* is locally asymptotically stable.

FRTNO5 — Lecture 4 Automatic Control LTH, Lund University



Lyapunov Functions  (~ Energy Functions)

A function V that fulfills (1)—(3) is called a Lyapunov function.

Condition (3) means that V is non-increasing along all
trajectories in Q:

ov ov

Via)=—x=> —fi(x)<0
( ) ox ; (9xlfl( )_
where&— ﬂﬂ ﬂ
Ox | 0x1 Oxy’ " Oxn

X1

level sets where V = const.
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Conservation and Dissipation

Conservation of energy : V(x) = %f(x) =0, i.e., the vector
field f(x) is everywhere orthogonal to the normal %—Z to the
level surface V(x) = c.

Example: Total energy of a lossless mechanical system or total
fluid in a closed system.
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Conservation and Dissipation

Conservation of energy : V(x) = %f(x) =0, i.e., the vector
field f(x) is everywhere orthogonal to the normal %—Z to the
level surface V(x) = c.

Example: Total energy of a lossless mechanical system or total
fluid in a closed system.

Dissipation of energy:  V(x) = %f(x) <0, i.e., the vector
field f(x) and the normal %—‘; to the level surface {z: V(2) = ¢}
make an obtuse angle (Sw. “trubbig vinkel”).

Example: Total energy of a mechanical system with damping or
total fluid in a system that leaks.

FRTNO5 — Lecture 4 Automatic Control LTH, Lund University



Geometric interpretation

. 4y
gradient o

V (x)=constant , %)

Vector field points into sublevel sets

Trajectories can only go to lower values of V (x)
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For any trajectory x(t)

V() = VGO) + [ V(E)ds < V((0)
which means that the whole trajectory lies in the set

{z|V(z) < V(x(0))}

For stability it is thus important that the sublevel sets
{2|V(2) < c}bounded Ve > 0 <= V(x) — oo as ||x|| — oo.
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Pendulum
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Example—Pendulum

(1) V(0)=0
(2) V(x) > 0for —27 < x; < 27 and (x1,x2) # 0
3) .
V(x) = &1 sinx gl + P2xgie =0,  forall x

Hence, x = 0 is locally stable.

Note that x = 0 is not asymptotically stable, because V (x) = 0
and not < 0 for all x # 0.

FRTNO5 — Lecture 4 Automatic Control LTH, Lund University



Positive Definite Matrices

Definition: Symmetric matrix M = M7 is
@ positive definite (M > 0) if xTMx >0, Vx#0
@ positive semidefinite (M >0) if x"Mx >0, Vx

Lemma:
oM=M">0 < A1(M)>0,Vi
oM=MT">0 < L(M)>0,Vi

M=MT>0 V(x):=xTMx
U
V(0)=0, V(x)>0,Vx#0
V (x) candidate Lyapunov function
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More matrix results

o for symmetric matrix M = MT
Amin(M)||z|2 < ITMx < Amax(M)||x|%, Vx

Proof idea: factorize M = UAUT, unitary U (i.e.,
[|[Ux|| = ||x|| Vx), A = diag(41,...,4,)

@ for any matrix M

1Ml </ Amax(MTM)||x]|,  Va
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Example- Lyapunov function for linear system

i=Ax = [_01 _43} [ij (1)

Eigenvalues of A : {—1, —3} = (global) asymptotic stability.

Find a quadratic Lyapunov function for the system (1):

Ve =eTPe= [ ) [P0 PE 5], p=pT>0
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Example- Lyapunov function for linear system

i=Ax = [_01 _43} [ij (1)

Eigenvalues of A : {—1, —3} = (global) asymptotic stability.

Find a quadratic Lyapunov function for the system (1):

Ve =eTPe= [ ) [P0 PE 5], p=pT>0

Take any @ = QT > 0, say @ = I5,s. Solve ATP + PA = —@Q.
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Example contd

ATP+PA=—1
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Example contd

ATP+PA=—]
[—1 0} [pll plz} & [pll plz] [—1 4] _
4 3| |p12 D22 pi2 pa2|| 0 -3 )
[ —2p11 —4p12 + 4p11} £ [—1 0 ]
—4p12 +4p11 8p12 — 6p22 0 -1
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Example contd

ATP+PA=—1
[—1 0} [pll plz} L [pll plz] [—1 4] _
4 3| |p12 D22 pi2 p2| |0 -3 @
—4pia+4pu| _|-1 O
10 -1

[ —2p11
—4p12 +4p11 8p12 — 6p22

Solving for p11, p12 and psg gives
2p1 = -1
—4p12 +4p11 =0
8p12 — 6pge = —1
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Example contd

ATP+PA=—1
[—1 0} [pll plz} L [pll plz] [—1 4] _
4 3| |p12 D22 pi2 p2| |0 -3 @
—4pia+4pu| _|-1 O
10 -1

[ —2p11
—4p12 +4p11 8p12 — 6p22

Solving for p11, p12 and psg gives
2p1 = -1
—4p12 +4p11 =0
8p12 — 6pge = —1

psd B ER
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x1'=-x1+4x2
x2'=-3x2

Phase plot showing that

V=3 +x3) = [x1 x] [0'5 0 ] [xl] does NOT work.

0 05| |xe
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Lyapunov Stability for Linear Systems

Linear system: x = Ax
Lyapunov equation: Let @ = QT > 0. Solve
PA+ATP=—@Q
with respect to the symmetric matrix P.
Lyapunov function: V (x) = 7 Px, =
V(x) = xTPi + 4T Px = T (PA + ATP)x = —xTQx < 0
Asymptotic Stability:  If P = PT > 0, then the Lyapunov

Stability Theorem implies (local=global) asymptotic stability,
hence the eigenvalues of A must satisfy Re 1;,(A) < 0, V&
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Converse Theorem for Linear Systems

If Re A,(A) < 0 VE, then for every @ = QT > 0 there exists
P =PT > 0suchthat PA+ ATP=—@Q

Proof: Choose P = / ATt QeAldt. Then
0

t
ATP+PA = lim (ATeATTQeAT + eATTQAeAT) dr
— 00 0

= lim [eATTQeAT]t
t—00 0

= -Q
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Interpretation

Assume x = Ax, x(0) = z. Then
/ x (t)Qx(t)dt = 2" </ eATthAtdt> z=2"Pz
0 0

Thus V (2) = 2T Pz is the cost-to-go from z (with no input) and
integral quadratic cost function with weighting matrix @.
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Lyapunov’s Linearization Method

Recall from Lecture 2:

Theorem Consider
x = f(x)

Assume that f(0) = 0. Linearization

t=Ax+g(x), |lg)ll =o(lx]l)asx — 0.

(1) Red(A) <0,Vk = x =0 locally asympt. stable
(2) 3k : ReA,(A) >0 = x =0 unstable
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Proof of (1) in Lyapunov’s Linearization Method

Put V(x) := 2T Px. Then, V(0) =0, V(x) > 0 Vx # 0, and

V(x) = xTPf(x) + fT (x)Px
= 2T P[Ax + g(x)] + [xT AT + g7 (x)] Px
= xT(PA + ATP)x + 25T Pg(x) = —xT Qx + 2xT Pg(x)

7 Qx > Amin(Q) ||
and for all y > 0 there exists » > 0 such that

lg@)l <7ll=ll, Vx|l <r
Thus, choosing y sufficiently small gives

V(%) < —(Amin(@) — 27 Ammax(P)) l2ll” < 0
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Lyapunov Theorem for Global Asymptotic Stability

Theorem Let x = f(x) and f(x*) = 0.
If there exists a C! function V : R* — R such that

1)V
2) V
3) V
4) VvV

x*) =0
x) > 0, for all x # x*
x) < 0 for all x # x*

x) — 00 as ||x|| = oo

(
(
(
(

~—~ T~ ~

then x* is a globally asymptotically stable equilibrium.
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Radial Unboundedness is Necessary

If the condition V' (x) — oo as ||x|| — oo is not fulfilled, then
global stability cannot be guaranteed.

Example Assume V (x) = x2/(1 + x2) + x3 is a Lyapunov
function for a system. Can have ||x|| — oo even if V(x) < 0.

Contour plot V(x) = C:
Y= Semell

— \— —6
) . x

1 = +9%
7 1 (1+ x2)2 2
—2

| g Y ik

(14 x2)2

, X2
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Somewhat Stronger Assumptions

Theorem: Letx = f(x) and f(x*) = 0. If there exists a C*
function V : R® — R such that

(1) V(x*) =0

(2) V(x) > 0forall x # x*
(3) V(x) < —aV(x) for all x
(4) V(x) = oo as ||x]| — o

then x* is globally exponentially stable.
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Proof Idea

Assume x(t) # 0 ( otherwise we have x(7) = 0 for all 7 > ¢).

Then /
V(%)
V(%)

Integrating from 0 to ¢ gives

<—a

log V(x(t)) —log V(x(0)) < —at = V(x(t)) < e *V(x(0))
Hence, V(x(t)) — 0, t — oo.

Using the properties of V it follows that x(¢) — 0, ¢ — oo.
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Invariant Sets

Definition: A set M is called invariant if for the system
x = f(x),

x(0) € M implies that x(¢) € M for all ¢ > 0.
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LaSalle’s Invariant Set Theorem

Theorem Let Q C R” compact invariant set for x = f(x).

Let V: Q — R be a C! function such that V(x) <0, Vx € Q,
E :={x € Q: V(x) = 0}, M :=largest invariant subset of E
= Vx(0) € Q, x(t) approaches M as ¢t — +oo

Note that V must not be a positive definite function in this case.
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Special Case: Global Stability of Equilibrium

Theorem: Letx = f(x) and £(0) = 0. If there exists a C!
function V : R® — R such that

(1) V(0) =0, V(x)>O0forallx #0

(2) V(x) <0forall x

(3) V(x) > o0 as ||x]| = o0

(4) The only solution of & = f(x), V(x) = 0is x(t) = 0 V¢

- x = 0 is globally asymptotically stable.
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A Motivating Example (cont'd)

mi = —bx|x| — kox — k1x®
V(x) = (2ma? + 2kox? + k1x*)/4 >0,  V(0,0) =0
V(x) = —blif*

Assume that there is a trajectory with x(¢) = 0, x(¢) # 0. Then

d ko

k
() = ——x(t) - ZLys

(£) #0,

which means that x(¢) can not stay constant.

Hence, V(x) =0 <= x(t) =0, and LaSalle’s theorem gives
global asymptotic stability.
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Example—Stable Limit Cycle

Show that M = {x : ||x|| = 1} is a asymptotically stable limit
cycle for (almost globally, except for starting at x=0):

X1 = X1 — X — xl(x% + x%)
X9 = X1 + X — xg(x% + x%)

Let V(x) = (27 + 22 — 1),

dv d
= —2(x} + 23— 1)

DN

(x2+x3)<0 forxe Q

Q = {0 < ||x|| £ R} is invariant for R = 1.
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Example—Stable Limit Cycle

E={xecQ:V(x)=0}={x: |x|| =1}
M = E is an invariant set, because
d
EV =22 +x5—1)(x2+x5)=0 forxe M

We have shown that M is a asymtotically stable limit cycle
(globally stable in R — {0})

Phase Plane
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A Motivating Example (revisited)

mi = —bx|x| — kox — kyx®
V(x,%) = (2ma? + 2kox? 4+ k1x*)/4 >0,  V(0,0) =0
V(x,x) = —b|x|? gives E = {(x,%) : x = 0}.
Assume there exists (&,x) € M such that () # 0. Then
mj_é(to) = —koi‘(to) = k13_63(t()) #0

so ¥(tp+) # 0 so the trajectory will immediately leave M. A
contradiction to that M is invariant.

Hence, M = {(0,0)} so the origin is asymptotically stable.
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Adaptive Noise Cancellation by Lyapunov Design

u b x X
s+a “
/
7 x
ta

X +ax = bu

X+ ax =bu
Introducex =x—x, a=a—a, b=>b—-0.

Want to design adaptation law so that x — 0
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Let us try the Lyapunov function
1 .
V= §(a“c”z + Ya@? + ypb%)
V = X + yad6 + ypbb =
= %(—af — G% + bu) + 7434 + 7bb = —ai®
where the last equality follows if we choose

a=—-a=—xx b=—b=—ixu
Ya 14

Invariant set: x = 0.

This proves that x — 0.

(The parameters a and b do not necessarily converge: u = 0.)

‘ Demonstration if time permits‘
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Results
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Estimation of parameters starts at t=10 s.
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Results

Estimation of parameters starts at t=10 s.
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Next Lecture

@ Stability analysis using input-output (frequency) methods

FRTNO5 — Lecture 4 Automatic Control LTH, Lund University



