Lecture 3

» Phase-plane analysis
» Classification of singularities
» Stability of periodic solutions

Material

» Glad and Ljung: Chapter 13
» Khalil: Chapter 2.1-2.3
» Lecture notes



Today’s Goal

You should be able to

» sketch phase portraits for two-dimensional systems

» classify equilibria into nodes, focus, saddle points, and
center points.

» analyze limit cycles through Poincaré maps



First glipse of phase plane portraits: Consider the system

. 2
x1=x1+x2

X9 = —X1 — X2

x1'=x1% +x2
x2'=-x1-x2

Flow-interpretation: To each point (x1, x2) in the plane there is
an associated flow-direction % = f(x1,%2)



First glipse of phase plane portraits: Consider the system

3‘c1=x%+x2

X9 = —X1 — X9

x1'=x12 + x2
x2'=-x1-x2

I I I I I I
-2 -1 0 1 2 3 4

In the point (x1, x2) = (1, 2) the vector field is pointing in the
direction (12 + 2, —1 —2) =(3, —3).



Linear Systems Revival

d X1| _ X1
dt [xz] =4 [xZ]
Analytic solution:  x(t) = eAx(0).

If A is diagonalizable, then

At 0 _
R A I A [

where vq,v9 are the eigenvectors of A (Av, = Aqvq etc).

Matlab:
» [V,Lambdal=eig(A)



Example: Two real negative eigenvalues

Given the eigenvalues 1; < A9 < 0, with corresponding
e

) faster  slower
eigenvectors vy and vq, respectively.

A A

Solution: x(t) = cie*tvy + coe’?tvy

Fast eigenvalue/vector: x(¢) ~ c1ettyy + equg for small ¢.
Moves along the fast eigenvector for small ¢

Slow eigenvalue/vector: x(t) ~ cze*?tv, for large t¢.
Moves along the slow eigenvector towards x = 0 for large ¢



Example—Stable Node

(And2) = (—1,-2) and [o; vs] = [(1) ‘11]

v1 is the slow direction and vy is the fast.
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Equilibrium Points for Linear Systems

stable node
ImA; =0: A1,A9<0
ImA; #0: Rek; <0

stable focus

unstable node
ll,/lz >0

Red; >0
unstable focus

saddle point
A1 <0< Ay

Red; =0
center point
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Example—Unstable Focus

. [0 -
X =

w O

w0 =ex) = [ L [ ol [1 Y] o

]x, o,0 >0, AMo=0tiw

In polar coordinates r = y/x% + x3, 6 = arctan xy/x;
(x1 = rcos 8, xg = rsinf):

r=or

6=w



Example- unstable focus cont'd

Ag=1=i Ao =03=+i
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Equilibrium Points for Linear Systems

stable node
ImA; =0: A1,A9<0
ImA; #0: Rek; <0

stable focus

unstable node
ll,/lz >0

Red; >0
unstable focus

saddle point
A1 <0< Ay

Red; =0
center point
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4 minute exercise

What is the phase portrait if 11 = 15?

Hint: For A; = A5 = A there are two different cases: only one
linearly independent eigenvector or all vectors are eigenvectors



Linear Time-Varying Systems (warning)

Warning: Pointwise “Left Half-Plane eigenvalues” of A(¢)
(i.e., time-varying systems) do NOT impose stability!!!

—1+acos?t 1—asintcost
= . . , a>0
At) ( —1—asintcost —1+ asin’¢ ) >

Pointwise eigenvalues are given by

_a—-2+xVa?-4

Alt) = A 5

which are in the LHP for 0 < a < 2 (and here even constant).
However,

(a—1)¢ —t o
e cost e ‘'sint
x(t) = < —el@Vtging etcost ) *(0),

which is an unbounded solution for o > 1.



Phase-Plane Analysis for Nonlinear Systems

Close to equilibria “nonlinear system” ~ “linear system”.
Theorem Assume
&= f(x)

is linearized at x( so that
% = Ax + g(x),

where g € Cland%—m%xﬁxo.

If 2= Az has a focus, node, or saddle point, then x = f(x) has
the same type of equilibrium at the origin.

If the linearized system has a center, then the nonlinear system
has either a center or a focus.



How to Draw Phase Portraits

If done by hand then

Find equilibria (also called singularities)

Sketch local behavior around equilibria

Sketch (x1,x2) for some other points. Use that j—jﬁ; = i—;
Try to find possible limit cycles

Guess solutions

a bk wnh e

Matlab: pptool6/pptool7, dfield6/dfield7, dee, ICTools,
etc.

PPTool and some other tools for Matlab is available on or via

http://www.control.lth.se/course/FRTNO5



Phase-Locked Loop

A PLL tracks phase 6i,(t) of a signal si,(¢) = A sin[wt + 6i,(t)].

Sin : “Oout”
_ .| Phase ;
Detector Filter VCO

eout

i e in(") K 1 Bout
—>(:)—> sin(- -
! 1+4sT

VA




Singularity Analysis of PLL

Let x1(¢) = Oout(t) and xz(t) = Oout(t).
Assume K, T > 0 and 6;,(¢) = 6, constant.

X1 = X9
%9 = —T1ag + KT™! sin(Oip — x1)

Singularities are (0;, + nx,0), since

X1 =0=>22=0
%9 =0=sin(0;, —x1) =0=x1 = 6j, + n7w



Singularity Classification of Linearized System

Linearization gives the following characteristic equations:

n even.
A+TIA+KT =0

K > (4T)~! gives stable focus
0 < K < (4T)~! gives stable node

n odd:
A+TIA—KT1=0

Saddle points for all K, T > 0



Phase-Plane for PLL

K =1/2, T = 1: Focus (2kz,0), saddle points ((2% + 1)r,0)

Phase Plane

#e




Summary

Phase-plane analysis limited to second-order systems
(sometimes it is possible for higher-order systems to fix some
states)

Many dynamical systems of order three and higher not fully
understood (chaotic behaviors etc.)



Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

Xr41 = f(xz)
is asymptotically stable at x* if the linearization

of has all eigenvaluesin |1] < 1
ox lx*

(that is, within the unit circle).



Example (cont'd): Numerical iteration

Xp41 = f(xr)

to find fixed point




Periodic Solutions:  x(¢ + T') = x(¢)

Example of an asymptotically stable periodic solution:

) 2 2
X1 = x1 — xg — x1(x] + x3)
(1)

X9 = %1 + X9 — xg(x% +x§)

Fhase Flane




Periodic solution: Polar coordinates.

Let
x1=rcos@ = dxi=cosOdr—rsinfdo
Xo =rsinf® = dxs = sin0dr + r cos 6d6
=
N\ _1( rcos@ rsin6 x1
6 ) r\ —sin® cos@ X9
Now
%1 =r(1—r?)cos@ —rsin@
%g =r(1—r?)sind + rcos @
which gives
r=r(l-— rz)
=1

Only r = 1 is a stable equilibrium!



A system has a periodic solution if for some T' > 0

x(t+T)=x(t), V>0

Note that a constant value for x(¢) by convention not is
regarded as periodic.

» When does a periodic solution exist?

» When is it locally (asymptotically) stable? When is it
globally asymptotically stable?



Poincaré map (“Stroboscopic map”)

x = f(x), x € R"
¢:(q) is the solution starting in g after time ¢.
¥ Cc R*!is a hyperplane transverse to ¢;.
The Poincaré map P: X —» X is

P(q) = ¢;(q),  7(q) is the first return time

?:(q)



Limit Cycles

If a simple periodic orbit pass through ¢*, then P(¢*) = ¢*.

Such an orbit is called a limit cycle.
q* is called a fixed point of P.

P(g") = ¢

Does the iteration g1 = P(q:) converge to ¢*?



Locally Stable Limit Cycles

The linearization of P around ¢* gives a matrix W = a SO

(qe+1— ") = Wigr — ¢°),
if g3, is close to g¢*.

» Ifall |A;(W)| < 1, then the corresponding limit cycle is
locally asymptotically stable

» If |[1;(W)| > 1, then the limit cycle is unstable .



Linearization Around a Periodic Solution

The linearization of

x(t) = f(x(2))

around xo(¢) = xo(t + T') is
x(t) = A()x(2)

A(t) = af 7 (vo(t) = Al +T)

P is the map from the solution at¢t = 0 to ¢ = 7(q).



Example—Stable Unit Circle

Rewrite (1) in polar coordinates:

7:*= r(1—r?)

6=1

Choose X = {(r,0) : r > 0,0 = 27k}.

The solution is
¢:(ro,60) = ([1 +(rg? —1)e 27 Y2 t 4 90)

First return time from any point (rg,8y) € X is 7(rg,0y) = 27.



Example—Stable Unit Circle

The Poincaré map is
P(ro) = [1+ (rg® — 1)e %771/

ro = 1is a fixed point.

The limit cycle that corresponds to r(¢) = 1 and 6(¢) =t is
locally asymptotically stable, because

W=7 (1) = o]

and
W] = \—(1 \—| 7 < 1



Example—The Hand Saw

Can we stabilize the inverted pendulum by vertical oscillations?




The Hand Saw—Poincaré Map

561 = X2
. 1 9 . .
X9 = g+ aw”sinxg | sinx;

¢
563(t) =W

Choose ¥ = {x3 = 27k}.



The Hand Saw—Poincaré Map

¢ =0and T = 2x /w. No explicit expression for P. ltis,
however, easy to determine W numerically. Do two (or
preferably many more) different simulations with different,
small, initial conditions x(0) = y and x(0) = z.

Solve W through (least squares solution of)

x(0)=z] =W (y Z]

This gives for ¢ = 1cm, £ = 17cm, @ = 180

1.37  0.035
W= [—3.86 0.630]

[x<T)1x(0)=y x(T)

which has eigenvalues (1.047,0.955). Unstable.
W is stable for @ > 183



The Hand Saw—Stability Condition

Make the assumptions that
{>a and aw’®>g

Then some calculations show that the Poincaré map is stable at

g* = 0 when
V29l
a

a >

a=1cmand{ =17 cm give w > 182.6 rad/s (29 Hz).



The Hand Saw—Simulation

Simulation results give good agreement

0.5} o = 183
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Next Lecture

» Lyapunov methods for stability analysis

Lyapunov generalized the idea of: If the total energy is
dissipated along the trajectories (i.e the solution curves), the
system must be stable.

Benefit: Might conclude that a system is stable or
asymptotically stable without solving the nonlinear differential
equation.

Nonlinear control is a serious business... cheer up ©



= M

VvorLvo

i Enginwsting




