@ Phase-plane analysis
@ Classification of singularities
@ Stability of periodic solutions

Material

@ Glad and Ljung: Chapter 13
@ Khalil: Chapter 2.1-2.3
@ Lecture notes
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Today’s Goal

You should be able to

@ sketch phase portraits for two-dimensional systems

@ classify equilibria into nodes, focus, saddle points, and
center points.

@ analyze limit cycles through Poincaré maps
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First glipse of phase plane portraits: Consider the system

x1=x%+x2

X9 = —X1 — X2
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First glipse of phase plane portraits: Consider the system

x1=x%+x2

X9 = —X1 — X2

x1'=x1% +x2
x2'=-x1-x2

Flow-interpretation: To each point (x1, x2) in the plane there is
an associated flow-direction % = f(x1,%2)
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First glipse of phase plane portraits: Consider the system

561=.’XJ%+.’X22

Xg = —X1 — X9

x1'=x12 +x2
x2'==x1-x2

In the point (x1, x2) = (1, 2) the vector field is pointing in the
direction (12 + 2, —1 —2) =(3, —3).
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Vectorfields in Oceanography ...

HOW ONE MAN'S OBSESSION WITH
RUNAWAY SNEAKERS AND RUBBER DUCKS
REVOLUTIONIZED OCEAN SCIENCE

%Euirﬁsﬁh,hgs,meyer&xtﬁb Scigliano

On 10 January 1992, during
a storm in the North Pacific
Ocean close to the Interna-
tional Date Line, twelve 40-foot
(13.3 m) intermodal contain-
ers were washed overboard.
One of these containers held
28,800 Floatees,...

http://en.wikipedia.org/wiki/Friendly_Floatees

FRTNO5 — Lecture 3 Automatic Control LTH, Lund University



Linear Systems Revival
d X1| _ X1
i [ =25

Analytic solution:  x(t) = eAx(0).

If A is diagonalizable, then

At 0 _
R e R LA [

where vy, v9 are the eigenvectors of A (Avy = Aqv; ete).

Matlab:
» [V,Lambda]=eig(A)
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Example: Two real negative eigenvalues

Given the eigenvalues 1; < A < 0, with corresponding
~ =~

) faster  slower
eigenvectors vy and vq, respectively.

Solution: x(t) = c1e*tvy + cge?tvy

Fast eigenvalue/vector: x(¢) ~ c1ettyy + equg for small ¢.
Moves along the fast eigenvector for small ¢

Slow eigenvalue/vector: x(t) ~ cge*?tv, for large ¢.
Moves along the slow eigenvector towards x = 0 for large ¢
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Example—Stable Node

(A d2) = (~1,-2) and [o1 vs] = [(1) ‘11}

v7 is the slow direction and vy is the fast.

q Fhasze Flane

08
0E
02k

o ok

-0z

04

06

-0k

FRTNO5 — Lecture 3 Automatic Control LTH, Lund University



Equilibrium Points for Linear Systems

stable node unstable node
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Example—Unstable Focus

x=|:o- _w]x, o,w >0, Ao =0 Fiw
w (o2 ?

1 1] [ecte® 0 1 1]
ORI OB b | LS | B IO

In polar coordinates r = \/x2 + x2, 8 = arctan xg/x;

(x1 =rcos 8, xo = rsiné):

F=or

6=ow
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Example- unstable focus cont’d

11,2=1:|:i 11,2=0.3:|:i

Fhase Flang

Phase Plane 1
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Equilibrium Points for Linear Systems

stable node unstable node
ImA; =0: 1,49 <0 A1,492 >0
ImA; #0: Rel; <0 ReA; >0
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4 minute exercise

What is the phase portrait if 11 = A5?

Hint: For 4; = A5 = A there are two different cases: only one
linearly independent eigenvector or all vectors are eigenvectors
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Star Node or Multi-Tangent Node

Case I: If

. [r o0
*=lo 2

] x, rank (A1 —A) =0

then the solution is

x1(t) = x1(0)e?
xg(t) = x9(0)e?t

Phase plane
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One Tangent Node

Case llI: If

. A1
xz[o A]x, rank (A1 —A) =1

then the solution is
x1(£) = x1(0)e? + tx2(0)eH
xo(t) = xg(0)e?t

There is only one eigenvector: v; = avy = [1 0]

Phase plane
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Linear Time-Varying Systems (warning)

Warning: Pointwise “Left Half-Plane eigenvalues” of A(¢)
(i.e., time-varying systems) do NOT impose stability!!!

—l4+acos®t 1—asintcost
A(t) = . .
() (—l—asmtcost —1+ asin®t )’ %>

Pointwise eigenvalues are given by

_a—2:|:\/a2—4

Alt) = A 5

which are in the LHP for 0 < a < 2 (and here even constant).
However,

(a—1)t —t o3
e cost e ‘'sint
@) = < —el@=Uiging e tcost ) (0

which is an unbounded solution for o > 1.
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Phase-Plane Analysis for Nonlinear Systems

Close to equilibria “nonlinear system” ~ “linear system”.

Theorem Assume
%= f(x)

is linearized at x¢ so that
x = Ax + g(x),

where g € C! and%—ﬂas:c—mo.
If 2= Az has a focus, node, or saddle point, then x = f(x) has
the same type of equilibrium at the origin.

If the linearized system has a center, then the nonlinear system
has either a center or a focus.
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How to Draw Phase Portraits

If done by hand then

© Find equilibria (also called singularities)
@ Sketch local behavior around equilibria
© Sketch (i1, x2) for some other points. Use that 3—2 = %

@ Try to find possible limit cycles
@ Guess solutions

Matlab: pptool6/pptool7, dfield6/dfield7, dee, ICTools,
etc.

PPTool and some other tools for Matlab is available on or via

http://www.control.lth.se/course/FRTNO5
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Phase-Locked Loop

A PLL tracks phase 6i,(t) of a signal si,(t) = A sin[wt + 6i,(t)].

sln HGOUtH
_ | Phase > - :
Detector Filter VCO

Oout

Bin e ' K Oout
O sin() 1+sT

| =
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Singularity Analysis of PLL

Assume K,T > 0 and 6;,(¢t) = 6i, constant.

X1 = X9
%9 = —T txg + KT! sin(Oin — x1)

Singularities are (6, + nx,0), since

X1 =0=>x2=0
%9 = 0= sin(0;, —x1) = 0= x1 = 6j, + nw
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Singularity Classification of Linearized System

Linearization gives the following characteristic equations:

n even.
AM+TIA+KT1=0

K > (4T)~! gives stable focus
0 < K < (4T)7! gives stable node

n odd:
A+TIA—KT1=0

Saddle points forall K, T > 0
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Phase-Plane for PLL

K =1/2, T = 1: Focus (2kz,0), saddle points ((2% + 1)z,0)

Fhase Flane
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Phase-plane analysis limited to second-order systems
(sometimes it is possible for higher-order systems to fix some
states)

Many dynamical systems of order three and higher not fully
understood (chaotic behaviors etc.)

FRTNO5 — Lecture 3 Automatic Control LTH, Lund University



Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

xp+1 = f(xr)
is asymptotically stable at x* if the linearization

? _has all eigenvalues in 1] <1

X lx

(that is, within the unit circle).
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Example (cont'd): Numerical iteration

oo el )

to find fixed point
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Periodic Solutions:  x(¢ + T') = x(t)

Example of an asymptotically stable periodic solution:

xl =x1—x2—x1(x%+x3) (1)

ko = X1 + X2 — X2 (] + x3)

Fhaze Flane
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Periodic solution: Polar coordinates.

Let
x1 =rcos@ = dxi; =cosOdr—rsinfdo
X9 =rsinf® = dxg = sin @dr + r cos 6d6O
r _1 rcos® rsin@ X1
& /] r\ —sinf® cos® X9
Now
%1 =7r(1—r?)cosd —rsin@
%9 =r(1—r?)sinf + rcos
which gives
#=r(l—r?)
=1

Only r = 1 is a stable equilibrium!
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A system has a periodic solution if for some T' > 0
x(t+T)=x(t), Vt>0

Note that a constant value for x(¢) by convention not is

regarded as periodic.

@ When does a periodic solution exist?

@ When is it locally (asymptotically) stable? When is it
globally asymptotically stable?
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Poincaré map (“Stroboscopic map”)

x = f(x), x € R"
¢:(q) is the solution starting in g after time ¢.
¥ Cc R*!lis a hyperplane transverse to ¢;.
The Poincaré map P: X —» X is
P(q) = ¢(¢)(a), 7(q) is the first return time

¢:(q)
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Limit Cycles

If a simple periodic orbit pass through ¢*, then P(¢*) = ¢*.

Such an orbit is called a limit cycle.
g* is called a fixed point of P.

P(g") =q

Does the iteration gz.1; = P(q) converge to ¢*?
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Locally Stable Limit Cycles

The linearization of P around ¢* gives a matrix W = a SO

(qr+1—q") » W(ar — q°),
if g5, is close to g¢*.

@ Ifall |1;(W)| < 1, then the corresponding limit cycle is
locally asymptotically stable

@ If |[4;(W)| > 1, then the limit cycle is unstable .
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Linearization Around a Periodic Solution

The linearization of

around xo(¢) = xo(t + T) is

#(t) = A@)()
A@) = X (xo(0)) = A€+ 1)

P is the map from the solution at ¢t = 0 to ¢ = 7(q).
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Example—Stable Unit Circle

Rewrite (1) in polar coordinates:

r:‘= r(1—r?)

Choose £ = {(r,0) : r > 0,0 = 27k}.

The solution is
th(ro, 90) = ([1 + (7‘62 — 1)6_2t]_1/2, t+ 90>

First return time from any point (rg,8¢) € X is 7(rg,0o) = 27.
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Example—Stable Unit Circle

The Poincaré map is
P(ro) = [1+ (rg® — 1)e %] 71/

ro = 1 is a fixed point.

The limit cycle that corresponds to r(¢) = 1 and 6(¢) =t is
locally asymptotically stable, because

=2 dp — [p—47
W—dro(l)—[e ]
and S
' — |47
W] = | S =l <1
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Example—The Hand Saw

Can we stabilize the inverted pendulum by vertical oscillations?

FRTNO5 — Lecture 3 Automatic Control LTH, Lund University



The Hand Saw—Poincaré Map

x1=x2

. 1 9 . .

x2=z g+ aw®sinxg | Sinx
x3(t)=a)

Choose ¥ = {x3 = 27k}.
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The Hand Saw—Poincaré Map

¢ =0and T = 2x /w. No explicit expression for P. It s,
however, easy to determine W numerically. Do two (or
preferably many more) different simulations with different,
small, initial conditions x(0) = y and x(0) = z.

Solve W through (least squares solution of)

[x(T) x(0>=z] =W (y 2)

This gives for a = 1cm, £ = 17cm, w = 180

W = [ 1.37 0.035]

x(T)

x(0)=y

—3.86 0.630

which has eigenvalues (1.047,0.955). Unstable.
W is stable for @ > 183
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The Hand Saw—Stability Condition

Make the assumptions that
£>a and aw? > g

Then some calculations show that the Poincaré map is stable at

qg* = 0 when
V290
a

w >

a=1cmand /=17 cm give w > 182.6 rad/s (29 Hz).

FRTNO5 — Lecture 3 Automatic Control LTH, Lund University



The Hand Saw—Simulation

Simulation results give good agreement

0.5} o = 183

1000

500} w = 182
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Next Lecture

@ Lyapunov methods for stability analysis

Lyapunov generalized the idea of: If the total energy is
dissipated along the trajectories (i.e the solution curves), the
system must be stable.

Benefit: Might conclude that a system is stable or
asymptotically stable without solving the nonlinear differential
equation.

Nonlinear control is a serious business... cheer up ©
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