
Lecture 3

Phase-plane analysis

Classification of singularities

Stability of periodic solutions

Material

Glad and Ljung: Chapter 13

Khalil: Chapter 2.1–2.3

Lecture notes
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Today’s Goal

You should be able to

sketch phase portraits for two-dimensional systems

classify equilibria into nodes, focus, saddle points, and
center points.

analyze limit cycles through Poincaré maps
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First glipse of phase plane portraits: Consider the system

ẋ1 = x21 + x2
ẋ2 = −x1 − x2

x1 ’ = x12 + x2
x2 ’ = − x1 − x2
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Flow-interpretation: To each point (x1, x2) in the plane there is
an associated flow-direction dx

dt
= f (x1, x2)
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In the point (x1, x2) = (1, 2) the vector field is pointing in the
direction (12 + 2, −1− 2) =(3, −3).
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Vectorfields in Oceanography ...

On 10 January 1992, during
a storm in the North Pacific
Ocean close to the Interna-
tional Date Line, twelve 40-foot
(13.3 m) intermodal contain-
ers were washed overboard.
One of these containers held
28,800 Floatees,...

http://en.wikipedia.org/wiki/Friendly_Floatees
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Linear Systems Revival

d

dt

[
x1
x2

]

= A
[
x1
x2

]

Analytic solution: x(t) = eAtx(0).
If A is diagonalizable, then

eAt = VeΛtV−1 =
[
v1 v2

]
[
eλ1t 0

0 eλ2t

]
[
v1 v2

]−1

where v1,v2 are the eigenvectors of A (Av1 = λ1v1 etc).

Matlab:
» [V,Lambda]=eig(A)
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Example: Two real negative eigenvalues

Given the eigenvalues λ1
︸︷︷︸

faster

< λ2
︸︷︷︸

slower

< 0, with corresponding

eigenvectors v1 and v2, respectively.

Solution: x(t) = c1eλ1tv1 + c2eλ2tv2

Fast eigenvalue/vector: x(t) ( c1eλ1tv1 + c2v2 for small t.
Moves along the fast eigenvector for small t

Slow eigenvalue/vector: x(t) ( c2eλ2tv2 for large t.
Moves along the slow eigenvector towards x = 0 for large t
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Example—Stable Node

ẋ =
[
−1 1

0 −2

]

x

(λ1,λ2) = (−1,−2) and
[
v1 v2

]
=

[
1 −1
0 1

]

v1 is the slow direction and v2 is the fast.
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Equilibrium Points for Linear Systems

stable node unstable node saddle point
Imλ i = 0 : λ1,λ2 < 0 λ1,λ2 > 0 λ1 < 0 < λ2

Imλ i ,= 0 : Reλ i < 0 Reλ i > 0 Reλ i = 0
stable focus unstable focus center point

Re λ

Im λ

x1

x2
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Example—Unstable Focus

ẋ =
[
σ −ω
ω σ

]

x, σ ,ω > 0, λ1,2 = σ ± iω

x(t) = eAtx(0) =
[
1 1

−i i

] [
eσ teiω t 0

0 eσ te−iω t

] [
1 1

−i i

]−1
x(0)

In polar coordinates r =
√

x2
1
+ x2

2
, θ = arctan x2/x1

(x1 = r cosθ , x2 = r sinθ ):

ṙ = σ r

θ̇ = ω
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Example- unstable focus cont’d

λ1,2 = 1± i λ1,2 = 0.3± i
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Equilibrium Points for Linear Systems

stable node unstable node saddle point
Imλ i = 0 : λ1,λ2 < 0 λ1,λ2 > 0 λ1 < 0 < λ2

Imλ i ,= 0 : Reλ i < 0 Reλ i > 0 Reλ i = 0
stable focus unstable focus center point

Re λ

Im λ

x1

x2
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4 minute exercise

What is the phase portrait if λ1 = λ2?

Hint: For λ1 = λ2 = λ there are two different cases: only one
linearly independent eigenvector or all vectors are eigenvectors
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Star Node or Multi-Tangent Node

Case I: If

ẋ =
[

λ 0

0 λ

]

x, rank (λ I − A) = 0

then the solution is

x1(t) = x1(0)eλ t

x2(t) = x2(0)eλ t
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One Tangent Node

Case II: If

ẋ =
[

λ 1

0 λ

]

x, rank (λ I − A) = 1

then the solution is

x1(t) = x1(0)eλ t + tx2(0)eλ t

x2(t) = x2(0)eλ t

There is only one eigenvector: v1 = α v2 =
[
1 0

]T
.
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Linear Time-Varying Systems (warning)

Warning: Pointwise “Left Half-Plane eigenvalues” of A(t)
(i.e., time-varying systems) do NOT impose stability!!!

A(t) =
(

−1+α cos2 t 1−α sin t cos t

−1−α sin t cos t −1+α sin2 t

)

, α > 0

Pointwise eigenvalues are given by

λ(t) = λ = α − 2±
√

α 2 − 4
2

which are in the LHP for 0 < α < 2 (and here even constant).
However,

x(t) =
(
e(α−1)t cos t e−t sin t
−e(α−1)t sin t e−t cos t

)

x(0),

which is an unbounded solution for α > 1.
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Phase-Plane Analysis for Nonlinear Systems

Close to equilibria “nonlinear system” ( “linear system”.

Theorem Assume
ẋ = f (x)

is linearized at x0 so that

ẋ = Ax + �(x),

where � ∈ C1 and �(x)−�(x0)
qx−x0q → 0 as x→ x0.

If ż = Az has a focus, node, or saddle point, then ẋ = f (x) has
the same type of equilibrium at the origin.

If the linearized system has a center, then the nonlinear system
has either a center or a focus.
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How to Draw Phase Portraits

If done by hand then

1 Find equilibria (also called singularities)
2 Sketch local behavior around equilibria
3 Sketch (ẋ1, ẋ2) for some other points. Use that dx1

dx2
= ẋ1
ẋ2

.

4 Try to find possible limit cycles
5 Guess solutions

Matlab: pptool6/pptool7, dfield6/dfield7, dee, ICTools,
etc.

PPTool and some other tools for Matlab is available on or via

http://www.control.lth.se/course/FRTN05
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Phase-Locked Loop

A PLL tracks phase θ in(t) of a signal sin(t) = A sin[ω t+ θ in(t)].

Phase
Detector Filter VCO

sin “θout”

sin(⋅)
−

e K

1+ sT
1

s

θ in θoutθ̇out
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Singularity Analysis of PLL

Let x1(t) = θout(t) and x2(t) = θ̇out(t).
Assume K ,T > 0 and θ in(t) = θ in constant.

ẋ1 = x2
ẋ2 = −T−1x2 + KT−1 sin(θ in − x1)

Singularities are (θ in + nπ , 0), since

ẋ1 = 0[ x2 = 0
ẋ2 = 0[ sin(θ in − x1) = 0[ x1 = θ in + nπ

FRTN05 — Lecture 3 Automatic Control LTH, Lund University



Singularity Classification of Linearized System

Linearization gives the following characteristic equations:

n even:
λ2 + T−1λ + KT−1 = 0

K > (4T)−1 gives stable focus
0 < K < (4T)−1 gives stable node

n odd:
λ2 + T−1λ − KT−1 = 0

Saddle points for all K ,T > 0
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Phase-Plane for PLL

K = 1/2, T = 1: Focus
(
2kπ , 0

)
, saddle points

(
(2k+ 1)π , 0

)
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Summary

Phase-plane analysis limited to second-order systems
(sometimes it is possible for higher-order systems to fix some
states)

Many dynamical systems of order three and higher not fully
understood (chaotic behaviors etc.)
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Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

xk+1 = f (xk)

is asymptotically stable at x∗ if the linearization

� f
�x

∣
∣
∣
x∗

has all eigenvalues in pλ p < 1

(that is, within the unit circle).
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Example (cont’d): Numerical iteration

xk+1 = f (xk)

to find fixed point
x∗ = f (x∗)

When does the iteration converge?

x∗x∗
x∗x∗x∗

xx
xx

f (x)

f (x)
f (x)

f (x)

?
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Periodic Solutions: x(t + T) = x(t)

Example of an asymptotically stable periodic solution:

ẋ1 = x1 − x2 − x1(x21 + x22)
ẋ2 = x1 + x2 − x2(x21 + x22)

(1)
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Periodic solution: Polar coordinates.

Let
x1 = r cosθ [ dx1 = cosθdr − r sinθdθ

x2 = r sinθ [ dx2 = sinθdr + r cosθdθ

[ (
ṙ

θ̇

)

= 1
r

(
r cosθ r sinθ
− sinθ cosθ

)(
ẋ1
ẋ2

)

Now
ẋ1 = r(1− r2) cosθ − r sinθ

ẋ2 = r(1− r2) sinθ + r cosθ

which gives
ṙ = r(1− r2)
θ̇ = 1

Only r = 1 is a stable equilibrium!
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A system has a periodic solution if for some T > 0

x(t+ T) = x(t), ∀t ≥ 0

Note that a constant value for x(t) by convention not is
regarded as periodic.

When does a periodic solution exist?

When is it locally (asymptotically) stable? When is it
globally asymptotically stable?
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Poincaré map (“Stroboscopic map”)

ẋ = f (x), x ∈ Rn

ϕ t(q) is the solution starting in q after time t.

Σ ⊂ Rn−1 is a hyperplane transverse to ϕ t.

The Poincaré map P : Σ → Σ is

P(q) = ϕτ (q)(q), τ (q) is the first return time

q ϕ t(q)

Σ

P(q)
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Limit Cycles

If a simple periodic orbit pass through q∗, then P(q∗) = q∗.

Such an orbit is called a limit cycle.
q∗ is called a fixed point of P.

P(q∗) = q∗

Does the iteration qk+1 = P(qk) converge to q∗?
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Locally Stable Limit Cycles

The linearization of P around q∗ gives a matrix W = �P
�q

∣
∣
∣
q∗

so

(qk+1 − q∗) ( W(qk − q∗),

if qk is close to q∗.

If all pλ i(W)p < 1, then the corresponding limit cycle is
locally asymptotically stable .

If pλ i(W)p > 1, then the limit cycle is unstable .
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Linearization Around a Periodic Solution

The linearization of

ẋ(t) = f (x(t))

around x0(t) = x0(t+ T) is

˙̃x(t) = A(t)x̃(t)

A(t) = � f
�x

(
x0(t)

)
= A(t+ T)

P is the map from the solution at t = 0 to t = τ (q).
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Example—Stable Unit Circle

Rewrite (1) in polar coordinates:

ṙ = r(1− r2)
θ̇ = 1

Choose Σ = {(r,θ ) : r > 0,θ = 2π k}.
The solution is

ϕ t(r0,θ0) =
(

[1+ (r−20 − 1)e−2t]−1/2, t+ θ0

)

First return time from any point (r0,θ0) ∈ Σ is τ (r0,θ0) = 2π .
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Example—Stable Unit Circle

The Poincaré map is

P(r0) = [1+ (r−20 − 1)e−2⋅2π ]−1/2

r0 = 1 is a fixed point.

The limit cycle that corresponds to r(t) = 1 and θ (t) = t is
locally asymptotically stable, because

W = dP
dr0

(1) =
[
e−4π

]

and

pWp =
∣
∣
∣
∣

dP

dr0
(1)

∣
∣
∣
∣
= pe−4π p < 1
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Example—The Hand Saw

Can we stabilize the inverted pendulum by vertical oscillations?
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The Hand Saw—Poincaré Map

ẋ1 = x2

ẋ2 =
1

{

(

� + aω 2 sin x3
)

sin x1

ẋ3(t) = ω

Choose Σ = {x3 = 2π k}.

Σ
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The Hand Saw–Poincaré Map

q∗ = 0 and T = 2π /ω . No explicit expression for P. It is,
however, easy to determine W numerically. Do two (or
preferably many more) different simulations with different,
small, initial conditions x(0) = y and x(0) = z.
Solve W through (least squares solution of)



x(T)
∣
∣
∣
x(0)=y

x(T)
∣
∣
∣
x(0)=z



 = W


y z




This gives for a = 1cm, { = 17cm, ω = 180

W =



1.37 0.035

−3.86 0.630





which has eigenvalues (1.047, 0.955). Unstable.

W is stable for ω > 183
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The Hand Saw—Stability Condition

Make the assumptions that

{ ≫ a and aω 2 ≫ �

Then some calculations show that the Poincaré map is stable at
q∗ = 0 when

ω >
√
2�{
a

a = 1 cm and { = 17 cm give ω > 182.6 rad/s (29 Hz).
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The Hand Saw—Simulation

Simulation results give good agreement
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Next Lecture

Lyapunov methods for stability analysis

Lyapunov generalized the idea of: If the total energy is
dissipated along the trajectories (i.e the solution curves), the
system must be stable.

Benefit: Might conclude that a system is stable or
asymptotically stable without solving the nonlinear differential
equation.

Nonlinear control is a serious business... cheer up
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Lab 1
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