
Lecture 2

• Linearization

• Stability definitions

• Simulation in Matlab/Simulink

Material

Glad& Ljung Ch. 11, 12.1,
( Khalil Ch 2.3, part of 4.1, and 4.3 )

Lecture slides
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Today’s Goal

To be able to

linearize, both around equilibria and trajectories

explain definitions of stability

check local stability and local controllability at equilibria

simulate in Simulink

Lecture 2 Nonlinear Control (FRTN05) 2014



Example - Linearization around equilibrium point

The linearization of

ẍ(t) = �
l
sin x(t)

around the equilibrium x∗ = nπ is given by

¨̃x(t) = �
l
sin(nπ + x̃(t)) ( �

l
(−1)n x̃(t)
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Linearization Around a Trajectory

Idea:
Make Taylor-expansion around a known solution {x∗(t),u∗(t)}

Neglect small terms (i.e., keep the linear terms, as these will locally
dominate over the higher order terms).

Let

dx∗/dt = f (x∗(t),u∗(t)) be a known solution
How will a small deviation {x̃, ũ} from this solution behave?

d(x∗ + x̃)
dt

= f (x∗(t) + x̃(t),u∗(t) + ũ(t))

(x∗(t),u∗(t))
x̃(t)

(x∗(t) + x̃(t),u∗(t) + ũ(t))
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2 minute exercise: Linearize

ẍ + ẋ3 − ẋ2 − x = u

around the solution

x∗(t) = et, u∗(t) = e3t − e2t

Hint: First check if (x∗, u∗) is a solution. Then plug-in
x(t) = et + x̃(t), u(t) = e3t − e2t + ũ(t), expand the expressions,
and finally remove higher order terms (≥ 2) of x̃ and ũ.
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Check if (x∗, u∗) is a solution:

ẍ∗(t) + (ẋ∗)3(t) − (̇x∗)2(t) − x∗(t) =
1 ⋅ 1 ⋅ et + (1 ⋅ et)3 − (1 ⋅ et)2 − et =

u∗(t) OK

Now use

x(t) = et + x̃(t) u(t) = e3t − e2t + ũ(t)

ẋ = dx
dt
= 1 ⋅ et + ˙̃x

ẍ = d
2x

dt2
= 1 ⋅ 1 ⋅ et + ¨̃x

and insert in the equation

ẍ + ẋ3 − ẋ2 − x = u

Lecture 2 Nonlinear Control (FRTN05) 2014



ẍ + ẋ3 − ẋ2 − x = u
1 ⋅ 1 ⋅ et + ¨̃x + (1 ⋅ et + ˙̃x)3 − (1 ⋅ et + ˙̃x)2 − (et + x̃) = e3t − e2t + ũ(t)

Expand the parantheses and keep the linear terms

et + ¨̃x + e3t + 3e2t ˙̃x + 3et( ˙̃x)2 + ( ˙̃x)3

−e2t−2et ˙̃x − ( ˙̃x)2−et−x̃ = e3t−e2t+ũ(t)

The blue terms correspond to the nominal solution and the
underlined terms to the remaining linear terms
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Linearization, explicit form

Consider ẋ(t) = f (x(t),u(t)) and assume ẋ∗ = f (x∗(t),u∗(t))

The linearization around (x∗(t),u∗(t)) is given by

d

dt
(x(t) − x∗(t)) = A(t) ⋅ (x(t) − x∗(t)) + B(t) ⋅ (u(t) − u∗(t))

where (if dim x = dim u = 2)

A(t) = � f
�x

∣

∣

∣

(x∗,u∗)
=

[ � f1
�x1

� f1
�x2� f2

�x1
� f2
�x2

]

∣

∣

∣

(x∗(t),u∗(t))

B(t) = � f
�u

∣

∣

∣

(x∗,u∗)
=

[ � f1
�u1

� f1
�u2� f2

�u1
� f2
�u2

]

∣

∣

∣

(x∗(t),u∗(t))
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Linearization, cont’d

The linearization of the output equation

y(t) = h(x(t),u(t))

around the nominal output y∗(t) = h(x∗(t),u∗(t)) is given by

(y(t) − y∗(t)) = C(t)(x(t) − x∗(t)) + D(t)(u(t) − u∗(t))

where (if dim y= dim x = dim u = 2)

C(t) = �h
�x

∣

∣

∣

(x∗,u∗)
=

[

�h1
�x1

�h1
�x2�h2

�x1
�h2
�x2

]

∣

∣

∣

(x∗(t),u∗(t))

D(t) = �h
�u

∣

∣

∣

(x∗,u∗)
=

[

�h1
�u1

�h1
�u2�h2

�u1
�h2
�u2

]

∣

∣

∣

(x∗(t),u∗(t))

Lecture 2 Nonlinear Control (FRTN05) 2014



Linearization Around a Trajectory, cont.

Let (x∗(t),u∗(t)) denote a solution to ẋ = f (x,u) and consider
another solution (x(t),u(t)) = (x∗(t) + x̃(t),u∗(t) + ũ(t)):

ẋ(t) = f (x∗(t) + x̃(t),u∗(t) + ũ(t))

= f (x∗(t),u∗(t)) + � f�x (x
∗(t),u∗(t))x̃(t)

+ � f�u (x
∗(t),u∗(t))ũ(t) +O (qx̃, ũq2)

(x∗(t),u∗(t))
x̃(t)

(x∗(t) + x̃(t),u∗(t) + ũ(t))
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State-space form

Hence, for small (x̃, ũ), approximately

˙̃x(t) = A(x∗(t),u∗(t))x̃(t) + B(x∗(t),u∗(t))ũ(t)

where (if dim x = 2, dim u = 1)

A(x∗(t),u∗(t)) = � f�x (x
∗(t),u∗(t)) =

[� f1
�x1

� f1
�x2� f2

�x1
� f2
�x2

]

∣

∣

∣

(x∗(t),u∗(t))

B(x∗(t),u∗(t)) = � f�u (x
∗(t),u∗(t)) =

[ � f1
�u1� f2
�u1

]

∣

∣

∣

(x∗(t),u∗(t))

Note that A and B are time dependent ! However, if we don’t
linearize around a trajectory but linearize around an equilibrium
point (x∗(t),u∗(t)) " (x∗,u∗) then A and B are constant.
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�x1
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�x2�h2

�x1
�h2
�x2

]

∣

∣

∣

(x∗(t),u∗(t))

D(t) = �h
�u

∣

∣

∣

(x∗,u∗)
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[

�h1
�u1�h2
�u1

]

∣

∣

∣

(x∗(t),u∗(t))
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Example: Rocket

h(t)

m(t)

ḣ(t) = v(t)
v̇(t) = −� + veu(t)

m(t)
ṁ(t) = −u(t)

Let u∗(t) " u∗ > 0; x∗(t) =





h∗(t)
v∗(t)
m∗(t)



; m∗(t) = m∗ − u∗t.

Linearization: ˙̃x(t) =







0 1 0

0 0 −veu∗

m∗(t)2
0 0 0






x̃(t) +





0
ve
m∗(t)
−1



 ũ(t)

Lecture 2 Nonlinear Control (FRTN05) 2014



Part II: Stability definitions
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Local Stability

Consider ẋ = f (x) where f (x∗) = 0

Definition The equilibrium x∗ is stable if, for any R > 0, there
exists r > 0, such that

qx(0) − x∗q < r =[ qx(t) − x∗q < R, for all t ≥ 0

Otherwise the equilibrium point x∗ is unstable .

x(t)
r

R
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Asymptotic Stability

Definition The equilibrium x∗ is locally asymptotically stable
(LAS) if it

1) is stable

2) there exists r > 0 so that if qx(0) − x∗q < r then

x(t) −→ x∗ as t −→∞.

(PhD-exercise: Show that 1) does not follow from 2))
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Global Asymptotic Stability

Definition The equilibrium is said to be globally
asymptotically stable (GAS) if it is LAS and for all x(0) one
has

x(t) → x∗ as t→∞.
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Part III: Check local stability and controllability
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Lyapunov’s Linearization Method

Theorem Assume
ẋ = f (x)

has the linearization

d

dt
(x(t) − x∗) = A(x(t) − x∗)

around the equilibrium point x∗ and put

α (A) = maxRe(λ(A))

If α (A) < 0, then ẋ = f (x) is LAS at x∗,

If α (A) > 0, then ẋ = f (x) is unstable at x∗,

If α (A) = 0, then no conclusion can be drawn.

(Proof in Lecture 4)
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Example

The linearization of

ẋ1 = −x21 + x1 + sin(x2)
ẋ2 = cos(x2) − x31 − 5x2

at x∗ =








1

0








gives A =









−1 1

−3 −5









Eigenvalues are given by the characteristic equation

0 = det(λ I − A) = (λ + 1)(λ + 5) + 3

This gives λ = {−2,−4}, which are both in the left half-plane,
hence the nonlinear system is LAS around x∗.
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Local Controllability

Theorem Assume
ẋ = f (x,u)

has the linearization

d

dt
(x(t) − x∗) = A(x(t) − x∗) + B(u(t) − u∗)

around the equilibrium (x∗,u∗) then

(A, B) controllable [ f (x,u) nonlinear locally controllable

Here nonlinear locally controllable is defined as:

For every T > 0 and ε > 0 the set of states x(T) that can be
reached from x(0) = x∗, by using controls satisfying
qu(t) − u∗q < ε , contains a small ball around x∗.
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5 minute exercise:

Is the ball and beam

ẍ = xφ̇2 + � sinφ + 2r
5

φ̈

nonlinearly locally controllable around
φ̇ = φ = x = ẋ = 0 (with φ̈ as input)?

Remark: This is a bit more detailed model of the ball and beam than we saw
in Lecture 1.
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However...

Bosch 2008 (Automatic parking assistance)

Multiple turns

parking lot > car length + 80 cm

More parking in lecture 12
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Example

An inverted pendulum with vertically moving pivot point

phi

u

φ̈(t) = 1
l
(� + u(t)) sin(φ(t)),

where u(t) is acceleration, can be written as

ẋ1 = x2

ẋ2 = 1

l
(� + u) sin(x1)
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Example, cont.

The linearization around x1 = x2 = 0,u = 0 is given by

ẋ1 = x2

ẋ2 = �
l
x1

It is not controllable, hence no conclusion can be drawn about
nonlinear controllability

However, simulations show that the system is stabilized by

u(t) = εω 2 sin(ω t)

if ω is large enough !

Demonstration We will come back to this example later.
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Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

xk+1 = f (xk)

is asymptotically stable at x∗ if the linearization

� f
�x

∣

∣

∣

x∗
has all eigenvalues in pλ p < 1

(that is, within the unit circle).
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Example (cont’d): Numerical iteration

xk+1 = f (xk)

to find fixed point
x∗ = f (x∗)

When does the iteration converge?

x∗x∗
x∗x∗x∗

xx
xx

f (x)

f (x)
f (x)

f (x)

?
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Part IV: Simulation

Often the only method

ẋ = f (x)
ACSL
Simnon
Simulink

F(ẋ, x) = 0
Omsim
http://www.control.lth.se/∼cace/omsim.html

Dymola http://www.dynasim.se/

Modelica
http://www.dynasim.se/Modelica/index.html

Special purpose
Spice (electronics)
EMTP (electromagnetic transients)
Adams (mechanical systems)
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Simulink

> matlab

> > simulink
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Simulink, An Example

File -> New -> Model

Double click on Continuous

Transfer Fcn

Step (in Sources)

Scope (in Sinks)

Connect (mouse-left)

Simulation->Parameters

1

s+1

Transfer FcnStep Scope
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Choose Simulation Parameters

Don’t forget “Apply”
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Save Results to Workspace

1

s+1

Transfer Fcn

t

To Workspace1

y

To WorkspaceSignal
Generator

Clock

Check “Save format” of output blocks (“Array” instead of “Structure”)

> > plot(t,y)

(or use “Structure” which also contains the time information.)
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How To Get Better Accuracy

Modify Refine, Absolute and Relative Tolerances, Integration
method

Refine adds interpolation points:

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Refine = 1

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Refine = 10
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Use Scripts to Document Simulations

If the block-diagram is saved to stepmodel.mdl,
the following Script-file simstepmodel.m simulates the system:

open_system(’stepmodel’)

set_param(’stepmodel’,’RelTol’,’1e-3’)

set_param(’stepmodel’,’AbsTol’,’1e-6’)

set_param(’stepmodel’,’Refine’,’1’)

tic

sim(’stepmodel’,6)

toc

subplot(2,1,1),plot(t,y),title(’y’)

subplot(2,1,2),plot(t,u),title(’u’)
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Submodels, Example: Water tanks

Equation for one water tank:

ḣ = (u− q)/A
q = a

√

2�
√
h

Corresponding Simulink model:

2

h

1

qSum
s

1

Integrator

1/A

Gain

f(u)

Fcn

1

In

Make a subsystem and connect two water tanks in series.

1

Out

In

q

h

Subsystem2

In

q

h

Subsystem

1

In
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Linearization in Simulink

Use the command trim to find e.g., stationary points to a
system > > A=2.7e-3;a=7e-6,g=9.8;

> > % Example to find input u for desired states/output

> > [x0,u0,y0]=trim(’flow’,[0.1 0.1]’,[],0.1)

x0 =

0.1000

0.1000

u0 =

8.3996e-06

y0 =

0.1000

Lecture 2 Nonlinear Control (FRTN05) 2014



Linearization in Simulink, cont.

Use the command linmod to find a linear approximation of the
system around an operating point:

> > [aa,bb,cc,dd]=linmod(’flow’,x0,u0);

> > sys=ss(aa,bb,cc,dd);

> > bode(sys)
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Linearization in Simulink; Alternative

By right-clicking on a signal connector in a Simulink model you
can add “Linearization points” (inputs and/or outputs).

2

h

1

qOutput Point

1
s

IntegratorInput Point

1/A

Gain

a*sqrt(2*g*u[1])

Fcn

1

In1

Start a “Control and Estimation Tool Manager” to get a linearized
model by
Tools -> Control Design ->Linear analysis ...

where you can set the operating points, export linearized model to
Workspace (Model-> Export to Workspace) and much more.
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Computer exercise

Simulation of JAS 39 Gripen

command

upilot

t

time

x

states

reference

1

T_f.s+1

prefilter

x’ = Ax+Bu
 y = Cx+Du

plane
dynamics

theta

pitch angle
pilot 1

L

Kf

Clock

Ctheta

Simulation

Analysis of PIO using describing functions

Improve design
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Today

Linearization, both around equilibria and trajectories,

Definitions of local and global stability,

How to check local stability and local controllability at
equilibria

Simulation tool: Simulink,

Next Lecture

Phase plane analysis

Classification of equilibria
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