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Overview Lecture 1

• Practical information
• Course contents
• Nonlinear control phenomena
• Nonlinear differential equations
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Course Goal

To provide students with a solid theoretical foundation of
nonlinear control systems combined with a good engineering
ability

You should after the course be able to

recognize common nonlinear control problems,

use some powerful analysis methods, and

use some practical design methods.
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Today’s Goal

Recognize some common nonlinear phenomena

Transform differential equations to autonomous form,
first-order form, and feedback form.

Describe saturation, dead-zone, relay with hysteresis,
backlash

Calculate equilibrium points
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Course Material

Textbook
Glad and Ljung, Reglerteori, flervariabla och olinjära
metoder, 2003, Studentlitteratur,ISBN 9-14-403003-7 or the
English translation Control Theory, 2000, Taylor & Francis
Ltd, ISBN 0-74-840878-9. The course covers Chapters
11-16,18. (MPC and optimal control not covered in the
other alternative textbooks.)

H. Khalil, Nonlinear Systems (3rd ed.), 2002, Prentice Hall,
ISBN 0-13-122740-8. A good, a bit more advanced text.

Giacomo Como, 2014 Nonlinear Control and Servo systems (FRT N05), Lec. 1



Course Material, cont.

Handouts (Lecture notes + extra material)

Exercises (can be download from the course home page)

Lab PMs 1, 2 and 3

Home page
http://www.control.lth.se/course/FRTN05/

Matlab/Simulink other simulation software
see home page
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Lectures and labs

The lectures (28 hours) are given as follows:

Mon 13–15, M:E Jan 20 – Mar 3
Wed 8–10, M:E Jan 22 – Feb 26
Thu 10-12 M:E Jan 23

The lectures are given in English.

———————

The three laboratory experiments are mandatory.

Sign-up lists are posted on the web at least one week before
the first laboratory experiment. The lists close one day before
the first session.

The Laboratory PMs are available at the course homepage.

Before the lab sessions some home assignments have to be
done. No reports after the labs.
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Exercise sessions and TAs

The exercises (28 hours) are offered twice a week

Tue 15:15-16:45 17-18:30 Wed 15:15-16:45 17-18:30

NOTE: The exercises are held in either ordinary lecture rooms or the
department laboratory on the bottom floor in the south end of the
Mechanical Engineering building, see schedule on home page.

Christian Grussler
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The Course

14 lectures

14 exercises

3 laboratories

5 hour exam: March 12, 2014, 8:00-13:00 .
Open-book exam: Lecture notes but no old exams or
exercises allowed.

Retake exam on April 25, 2014, 14-19, Sparta:B
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Course Outline

Lecture 1-3 Modelling and basic phenomena
(linearization, phase plane, limit cycles)

Lecture 2-6 Analysis methods
(Lyapunov, circle criterion, describing functions))

Lecture 7-8 Common nonlinearities
(Saturation, friction, backlash, quantization))

Lecture 9-13 Design methods
(Lyapunov methods, Backstepping, Optimal control)

Lecture 14 Summary
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Todays lecture

Common nonlinear phenomena

Input-dependent stability

Stable periodic solutions

Jump resonances and subresonances

Nonlinear model structures

Common nonlinear components

State equations

Feedback representation
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Linear Systems

S
u y = S(u)

Definitions: The system S is linear if

S(αu) = α S(u), scaling

S(u1 + u2) = S(u1) + S(u2), superposition

A system is time-invariant if delaying the input results in a
delayed output:

y(t− τ ) = S(u(t− τ ))
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Linear time-invariant systems are easy to analyze

Different representations of same system/behavior

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) = 0

y(t) = �(t) ⋆ u(t) =
∫

�(r)u(t− r)dr

Y(s) = G(s)U(s)

Local stability = global stability:

Eigenvalues of A (= poles of G(s)) in left half plane

Superposition:

Enough to know step (or impulse) response

Frequency analysis possible:

Sinusoidal inputs give sinusoidal outputs
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Linear models are not always enough

Example: Ball and beam

x

m�

m� sin(φ)

φ

Linear model (acceleration along beam) :
Combine F = m ⋅ a = md2x

dt2
with F = m� sin(φ):

ẍ(t) = � sin(φ(t))
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Linear models are not enough

x = position (m) φ = angle (rad) � = 9.81 (m/s2)

Can the ball move 0.1 meter in 0.1 seconds with constant φ?

Linearization: sinφ ∼ φ for φ ∼ 0
{

ẍ(t) = �φ

x(0) = 0

Solving the above gives x(t) = t2

2
�φ

For x(0.1) = 0.1, one needs φ = 2∗0.1
0.12∗� ≥ 2 rad

Clearly outside linear region!

Contact problem, friction, centripetal force, saturation

How fast can it be done? (Optimal control)
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Warm-Up Exercise: 1-D Nonlinear Control System

ẋ = x2 − x + u

stability for u = 0?
stability for constant u = b?
stability with linear feedback u = ax + b?
stability with non-linear feedback u(x) =?
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Stability Can Depend on Amplitude

?+ 1
s

1
(s+1)2

Motor Valve Process

−1

r y

Valve characteristic f (x) =???
Step changes of amplitude, r = 0.2, r = 1.68, and r = 1.72
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Stability Can Depend on Amplitude

+ 1
s

1
(s+1)2

Motor Valve Process

−1

r y

Valve characteristic f (x) = x2

Step changes of amplitude, r = 0.2, r = 1.68, and r = 1.72
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Step Responses
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Stability depends on amplitude!

Giacomo Como, 2014 Nonlinear Control and Servo systems (FRT N05), Lec. 1



Giacomo Como, 2014 Nonlinear Control and Servo systems (FRT N05), Lec. 1



Giacomo Como, 2014 Nonlinear Control and Servo systems (FRT N05), Lec. 1



Stable Periodic Solutions

Example: Motor with back-lash

y

Sum

5

P−controller

1

5s  +s2

Motor

0

Constant

Backlash

−1

Motor: G(s) = 1
s(1+5s)

Controller: K = 5
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Stable Periodic Solutions

Output for different initial conditions:

0 10 20 30 40 50
−0.5

0

0.5

Time t
O

ut
pu

t y

0 10 20 30 40 50
−0.5

0

0.5

Time t

O
ut

pu
t y

0 10 20 30 40 50
−0.5

0

0.5

Time t

O
ut

pu
t y

Frequency and amplitude independent of initial conditions!

Several systems use the existence of such a phenomenon
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Relay Feedback Example

Period and amplitude of limit cycle are used for autotuning

Σ Process

PID

Relay

A

T

u y

  − 1

0 5 1 0

− 1

0

1

Time

u
y

[ patent: T Hägglund and K J Åström]Giacomo Como, 2014 Nonlinear Control and Servo systems (FRT N05), Lec. 1



Jump Resonances

y

Sum
Sine Wave

Saturation

20

5s  +s2

Motor

−1

Response for sinusoidal depends on initial condition

Problem when doing frequency response measurement
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Jump Resonances

u = 0.5 sin(1.3t), saturation level =1.0

Two different initial conditions
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give two different amplifications for same sinusoid!
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Jump Resonances

Measured frequency response (many-valued)
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New Frequencies

Example: Sinusoidal input, saturation level 1
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a = 2a = 2a = 2a = 2
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New Frequencies

Example: Electrical power distribution

THD = Total Harmonic Distortion =
∑∞
k=2 energy in tone k
energy in tone 1

Nonlinear loads: Rectifiers, switched electronics, transformers

Important, increasing problem

Guarantee electrical quality

Standards, such as THD < 5%
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New Frequencies

Example: Mobile telephone

Effective amplifiers work in nonlinear region

Introduces spectrum leakage

Channels close to each other

Trade-off between effectivity and linearity
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Subresonances

Example: Duffing’s equation ÿ+ ẏ+ y− y3 = a sin(ω t)
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When is Nonlinear Theory Needed?

Hard to know when - Try simple things first!

Regulator problem versus servo problem

Change of working conditions (production on demand,
short batches, many startups)

Mode switches

Nonlinear components

How to detect? Make step responses, Bode plots

Step up/step down

Vary amplitude

Sweep frequency up/frequency down
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Some Nonlinearities

Static – dynamic

Sign

Saturation

Relay

eu

Math
Function

Look−Up
Table

Dead Zone

Coulomb &
Viscous Friction

Backlash

|u|

Abs
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Nonlinear Differential Equations

Problems

No analytic solutions

Existence?

Uniqueness?

etc
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Finite escape time

Example: The differential equation

dx

dt
= x2, x(0) = x0

has solution

x(t) = x0

1− x0t
, 0 ≤ t < 1

x0

Finite escape time

t f =
1

x0
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Finite Escape Time
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Finite escape time of dx/dt = x2
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Uniqueness Problems

Example: The equation ẋ = √x, x(0) = 0 has many solutions:

x(t) =
{

(t− C)2/4 t > C
0 t ≤ C

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

Time t

x(
t)

Compare with water tank:

dh/dt = −a
√
h, h : height (water level)

Change to backward-time: “If I see it empty, when was it full?”)Giacomo Como, 2014 Nonlinear Control and Servo systems (FRT N05), Lec. 1



Local Existence and Uniqueness

For R > 0, let ΩR denote the ball ΩR = {z; qz− aq ≤ R}.

Theorem
If, f is Lipschitz-continuous in ΩR, i.e.,

q f (z) − f (y)q ≤ Kqz− yq, for all z, y∈ ΩR ,

then
{

ẋ(t) = f (x(t))
x(0) = a

has a unique solution

x(t) , 0 ≤ t < R/CR,

where CR = maxx∈ΩR q f (x)q

Giacomo Como, 2014 Nonlinear Control and Servo systems (FRT N05), Lec. 1



Global Existence and Uniqueness

Theorem
If f is Lipschitz-continuous in Rn, i.e.,

q f (z) − f (y)q ≤ Kqz− yq, for all z, y∈ Rn ,

then
ẋ(t) = f (x(t)), x(0) = a

has a unique solution

x(t) , t ≥ 0 .
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State-Space Models

State vector x

Input vector u

Output vector y

general: f (x,u, y, ẋ, u̇, ẏ, . . .) = 0
explicit: ẋ = f (x,u), y = h(x)

affine in u: ẋ = f (x) + �(x)u, y= h(x)
linear time-invariant: ẋ = Ax + Bu, y= Cx
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Transformation to Autonomous System

Nonautonomous:
ẋ = f (x, t)

Always possible to transform to autonomous system

Introduce xn+1 = time

ẋ = f (x, xn+1)
ẋn+1 = 1
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Transformation to First-Order System

Assume d
ky

dtk
highest derivative of y

Introduce x =
[

y
dy
dt
. . .

dk−1y
dtk−1

]T

Example : Pendulum

MRθ̈ + kθ̇ +M�R sinθ = 0

x =
[

θ θ̇
]T

gives

ẋ1 = x2

ẋ2 = − k

MR
x2 −

�
R
sin x1
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A Standard Form for Analysis

Transform to the following form

G(s)

Nonlinearities
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Example, Closed Loop with Friction

_

_
GC

Friction

0 u

F

v

Z[

−G
1+CG

Friction
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Equilibria (=singular points)

Put all derivatives to zero!

General: f (x0,u0, y0, 0, 0, 0, . . .) = 0
Explicit: f (x0,u0) = 0
Linear: Ax0 + Bu0 = 0 (has analytical solution(s)!)
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Multiple Equilibria

Example: Pendulum

MRθ̈ + kθ̇ +M�R sinθ = 0

Equilibria given by θ̈ = θ̇ = 0 =[ sinθ = 0 =[ θ = nπ
Alternatively,

ẋ1 = x2

ẋ2 = − k

MR
x2 −

�
R
sin x1

gives x2 = 0, sin(x1) = 0, etc
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Next Lecture

Linearization

Stability definitions

Simulation in Matlab
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