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Points and grades

All answers must include a clear motivation. The total number of points is 25. The
maximum number of points is specified for each subproblem. Most subproblems can
be solved independently of each other.
Preliminary grades:

3: 12 — 16 points

4: 16.5 — 20.5 points
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All course material, except for exercises and solutions to old exams, may be used as
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of Formulae”. Pocket calculator.

Note!

In many cases the sub-problems can be solved independently of each other.

Good Luck!
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1.
a. Prove that the origin is globally asymptotically stable for the two systems
below
&1 = —dad —2z32h T = T
I S 2 ,
Ty = —OTy Ty = —2z1— T}
(2p)
b. Consider the nonlinear system
:i?l = —$i{) — XT3
:i?g = —$g + ZEgl‘%
T3 = xlzz:%—l—u

Design a feedback controller u(x) that renders the origin globally asymptoti-
cally stable. (2 p)

Solution

a. Along solutions of the first system, the candidate Lyapunov function
Vi) = 5t + 23)
has derivative
Vi(x) = o1 (—42} — 20323) + xo(—5xh) = —4ab — 2zia) — 527 .

Since V7(0) = 0, Vy(x) > 0 for all , Vi(z) < 0 for all z # 0, and Vi(x) is
radially unbounded, thus Lyapunov’s stability theorem implies that the origin
is a globally asymptotically stable equilibrium.

For the second system, consider the candidate Lyapunov function

1
Vir(z) = x% + §x§ .

Along the solutions, one has

VU(:E) = 2r1x9 + x2(—211 — :E%) = —x%.

One has Vi;(0) = 0, Viy(z) > 0 for all z, Vn(x) < 0, and Vir(x) is radially
unbounded. Since Vjr(z) = 0 for all x = (x1,0), and not only for x = 0, one
cannot simply use Lyapunov’s stability theorem, but should apply LaSalle’s
theorem. For that, observe that 9 = —2x1 when zo = 0, so that the largest
invariant subset of E = {z : Vis(z) = 0} = {(x1,0)} is {0}. Then, the origin
is a globally asymptotically stable equilibrium.
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b. Let us choose the candidate Lyapunov function

1
Vi) = 53 +af+ad),

which is radially unbounded and has a minimum V'(0) = 0 in the origin. Along
solutions of the system, its derivative is given by

V(z) = zi(—2} — xows) + wo(—ad + z327) + w3(2123 + u)
= —a] — 25+ 230 + 239(7)
where g(x) := —z129 + $%l‘2 + xlx%. Then, choosing
u(z) = —x3 — g()

gives ‘
V(z) = h(z), h(z) = —x] — 2§ — 22.

Since h(z) < 0 for all = # 0, Lyapunov’s stability theorem allows one to prove
global asymptotic stability of the origin with this choice of the control u(x).
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2.  Consider the sliding mode controlled system

where 1 is a scalar parameter and

n 1

_il_
2 140

+ u(x1, 22),

1| ~1
u(:nl,:ng):[ 5 | if 9 >0, u(a:l,xg):[ ) ] , if x9 <O0.
a. Determine the sliding set. (1.5 p)
b. Find the sliding dynamics. (1.5 p)

c. For which values of the parameter 7 is z* = [0, O]T a stable equilibrium for the

sliding dynamics?

Solution

(1p)

Let us rewrite the system as

with

ro-[Ta][nl L] e[ ]

. The sliding surface is {x9 = 0}, with normal vector [0, 1]7". In order to determine
the sliding set, we need to find the subset of the sliding surface where
[0,1]f"(x) <0, [0,1]f(z) > 0.

The above gives 4z1 — 2 < 0, and 421 + 2 > 0, i.e.,, —1/2 < 21 < 1/2. Hence,
the sliding set is {(z1,0) : |z1]| < 1/2}.

. The sliding dynamics are given by the convex combination
& =aff @)+ (1 -a)f (),
where a = «(z) is determined by the condition
0,1] (afF(z)+ (1 —a)f (x)) =0.

The above gives
4y — 204+ 2(1 —a) =0,
that is « = x1 + 1/2. Substituting back, one finds that the sliding dynamics is
given by
z1
Z2

. On the sliding set the dynamics are given by &1 = ( + 2)x1. The origin is a
locally stable equilibrium if and only if n < —2, and is an asymptotically stable
equilibrium if and only if n < —2.

n+2 1

P=aff@)+1-a)f @=]" "
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3. Consider the following controlled dynamical system
o(t) = —2v(t) +u(t), v(0)=0

describing the velocity of a particle affected by viscous friction and driven by
a controlled force u(t). One is interested in choosing u(t) so as to meet the
constraint

v(l) =3,

while minimizing the acceleration cost

/01u2(t) dt.

a. Write down the Hamiltonian and the co-state equations. (1p)

b. Solve the co-state equations. (1p)

c. Find the optimal control u*(t) (2 p)
Solution

a. The state is z = v, the running cost L(z,u) = u?, the time horizon ty =1,
the final cost ¢(z) = 0, and the dynamics & = f(x,u) = —2z + u. Note that
we have a final time constraint ¢ (v(ty)) = 0, and 9 (v) = v — 3. Then, we
need the more general version of the Pontryagin maximum principle, with the
Hamiltonian given by

H(x,u, \,ng) = noL(z,u) + \f(x,u) = nou? + \(—2z + u)

where the multiplier ng can take the values ng = 0 or ng = 1, and the co-state
equation reads

: 0
A o A

with final time condition

A1) = no-6(w(1) + (e (1) =

where p > 0.

b. The solution of the co-state equation

is given by
A(t) = pe2t=1

c. We should consider both the abnormal case ng = 0 and the normal one ng = 1,
separately.
For the abnormal case, observe that, since [ng,u] # [0,0], one has either

uw < 0,or p> 0. For p < 0, one gets A\(t) < 0, so that the Hamiltonian
H(z,u, \(t),no = 0) = A\(t)(—2z + u) does not admit a minimum in u. (The
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infimum —oco is achieved by taking arbitrarily negative u.) For u > 0, one gets
A(t) > 0, so that the Hamiltonian H (z,u, A(t),no = 0) = A(t)(—2x + u) is
minimized by taking u(t) = 0, for all ¢ € [0,1]. However, choosing u(t) = 0 for
all ¢t € [0, 1] gives state equation

whose solution z(t) = 0 for all ¢ € [0, 1] violates the constraint (1) = 3.

Then, we are left with considering the normal case ng = 1. Here the Hamilto-
nian at time t reads

H(z,u,Mt),n0 = 1) = u? + \(t)(—2z + u).

The minimum of u? + A(t)(—2x + u) with respect to u is found by solving
%(u2 + A(—2x +u)) = 2u+ A = 0, which gives us

1
W) = —=A(t) = — LD e o,1).
2 2

It remains to determine the value of u. To get it, one needs to solve the state
equation
_F 20—

2¢
and impose the constraint z(1) = 3. The solution is

T=—-2r+u=—2r

x(t) = —gez(t_l)

so that x(1) = u/8 = 3 gives u = 24.



