
Lecture 9 — Nonlinear Control Design

◮ Exact-linearization
◮ Lyapunov-based design

◮ Lab 2
◮ Adaptive control
◮ Backstepping

◮ Hybrid / Piece-wise linear control
◮ NOTE: Only overview!

Literature: [Khalil, ch.s 13, 14.2,14.3] and [Glad-Ljung,ch.17]



Course Outline

Lecture 1-3 Modelling and basic phenomena
(linearization, phase plane, limit cycles)

Lecture 4-6 Analysis methods
(Lyapunov, circle criterion, describing functions)

Lecture 7-8 Common nonlinearities
(Saturation, friction, backlash, quantization)

Lecture 9-13 Design methods
(Lyapunov methods, Backstepping, Optimal control)

Lecture 14 Summary



Exact Feedback Linearization

Idea:

Find state feedback u = u(x,v) so that the nonlinear system

ẋ = f (x) + �(x)u

turns into the linear system

ẋ = Ax + Bv

and then apply linear control design method.



Exact linearization: example [one-link robot]

{

θτ

m

m{2θ̈ + dθ̇ +m{� cosθ = u

where d is the viscous damping.

The control u = τ is the applied torque

Design state feedback controller u = u(x) with x = (θ , θ̇ )T



Introduce new control variable v and let

u = m{2v+ dθ̇ +m{� cosθ

Then
θ̈ = v

Choose e.g. a PD-controller

v = v(θ , θ̇) = kp(θ ref − θ ) − kdθ̇

This gives the closed-loop system:

θ̈ + kdθ̇ + kpθ = kpθ ref

Hence, u = m{2[kp(θ − θ ref) − kdθ̇ ] + dθ̇ +m{� cosθ



Multi-link robot (n-joints)

x

y

z θ2

θ1

τ

General form

M(θ )θ̈ + C(θ , θ̇ )θ̇ + G(θ ) = u, θ ∈ Rn

Called fully actuated if n indep. actuators,

M n$ n inertia matrix, M = MT > 0
Cθ̇ n$ 1 vector of centrifugal and Coriolis forces
G n$ 1 vector of gravitation terms



Computed torque

The computed torque
(also known as "Exact linearization", "dynamic inversion" , etc. )

u = M(θ )v+ C(θ , θ̇ )θ̇ + G(θ )

v = Kp(θ re f − θ ) − Kdθ̇ ,
(1)

gives closed-loop system

θ̈ + Kdθ̇ + Kpθ = KpθRe f

The matrices Kd and Kp can be chosen diagonal (no
cross-terms) and then this decouples into n independent
second-order equations.



Lyapunov-Based Control Design Methods

ẋ = f (x,u)

◮ Select Lyapunov function V (x) for stability verification
◮ Find state feedback u = u(x) that makes V decreasing
◮ Method depends on structure of f

Examples are energy shaping as in Lab 2 and, e.g.,
Back-stepping control design , which require certain f
discussed later.



Lab 2 : Energy shaping for swing-up control

[movie]

Use Lyapunov-based design for swing-up control.



Lab 2 : Energy shaping for swing-up control

Rough outline of method to get the pendulum to the upright
position

◮ Find expression for total energy E of the pendulum
(potential energy + kinetic energy)

◮ Let En be energy in upright position.
◮ Look at deviation V = 1

2
(E − En)

2 ≥ 0

◮ Find "swing strategy" of control torque u such that V̇ ≤ 0



Example of Lyapunov-based design

Consider the nonlinear system

ẋ1 = −3x1 + 2x1x
2
2 + u (2)

ẋ2 = −x
3
2 − x2,

Find a nonlinear feedback control law which makes the origin
globally asymptotically stable.

We try the standard Lyapunov function candidate

V (x1, x2) =
1

2

(
x21 + x

2
2

)
,

which is radially unbounded, V (0, 0) = 0, and
V (x1, x2) > 0 ∀(x1, x2) ,= (0, 0).



Example - cont’d

V̇ = ẋ1x1 + ẋ2x2 = (−3x1 + 2x1x
2
2 + u)x1 + (−x

3
2 − x2)x2

= −3x21 − x
2
2+ux1+2x

2
1x
2
2 − x

4
2

We would like to have

V̇ < 0 ∀(x1, x2) ,= (0, 0)

Inserting the control law, u = −2x1x22, we get

V̇ = −3x21−x
2
2−2x

2
1x
2
2 + 2x

2
1x
2
2︸ ︷︷ ︸

=0

−x42 = −3x
2
1−x

2
2−x

4
2 < 0, ∀x ,= 0



Consider the system

ẋ1 = x
3
2

ẋ2 = u
(3)

Find a globally asymptotically stabilizing control law u = u(x).

Attempt 1: Try the standard Lyapunov function candidate

V (x1, x2) =
1

2

(
x21 + x

2
2

)
,

which is radially unbounded, V (0, 0) = 0, and
V (x1, x2) > 0 ∀(x1, x2) ,= (0, 0).

V̇ = ẋ1x1 + ẋ2x2 = x
3
2 ⋅ x1 + u ⋅ x2 = x2 (x

2
2x1 + u)︸ ︷︷ ︸
−x2

= −x22 ≤ 0

where we chose
u = −x2 − x

2
2x1



However V̇ = 0 as soon as x2 = 0 (Note: x1 could be anything).

According to LaSalle’s theorem the set
E = {xpV̇ = 0} = {(x1, 0)}∀x1

What is the largest invariant subset M ⊆ E?

Plugging in the control law u = −x2 − x22x1, we get

ẋ1 = x
3
2

ẋ2 = −x2 − x
2
2x1

(4)

Observe that if we start anywhere on the line {(x1, 0)} we will
stay in the same point as both ẋ1 = 0 and ẋ2 = 0, thus M=E
and we will not converge to the origin, but get stuck on the line
x2 = 0.

Draw phase-plot with e.g., pplane and study the behaviour.



Attempt 2:

ẋ1 = x
3
2

ẋ2 = u
(5)

Try the Lyapunov function candidate

V (x1, x2) =
1

2
x21 +

1

4
x42,

which satisfies

◮ V (0, 0) = 0

◮ V (x1, x2) > 0, ∀(x1, x2) ,= (0, 0).
◮ radially unbounded,
◮ compute

V̇ = ẋ1x1 + ẋ2x
3
2 = x

3
2(x1 + u) = −x

4
2 ≤ 0

↑
if we use u = −x1 − x2



With
u = −x1 − x2

we get the dynamics

ẋ1 = x
3
2

ẋ2 = −x1 − x2
(6)

V̇ = 0 if x2 = 0, thus

E = {xpV̇ = 0} = {(x1, 0)∀x1}

However, now the only possibility to stay on x2 = 0 is if x1 = 0, (
else ẋ2 ,= 0 and we will leave the line x2 = 0).
Thus, the largest invariant set

M = (0, 0)

According to the Invariant Set Theorem (LaSalle) all solutions
will end up in M and so the origin is GAS.

Draw phase-plot with e.g., pplane and study the behaviour.



Adaptive Noise Cancellation Revisited

u b
s+a

b̂
s+â

x

x̂

x̃+
−

ẋ + ax = bu

˙̂x + âx̂ = b̂u

Introduce x̃ = x − x̂, ã = a− â, b̃ = b− b̂.

Want to design adaptation law so that x̃→ 0



Let us try the Lyapunov function

V =
1

2
(x̃2 + γ aã

2 + γ bb̃
2)

V̇ = x̃ ˙̃x + γ aã ˙̃a+ γ bb̃
˙̃
b =

= x̃(−ax̃ − ãx̂ + b̃u) + γ aã ˙̃a+ γ bb̃
˙̃
b = −ax̃2

where the last equality follows if we choose

˙̃a = − ˙̂a =
1

γ a
x̃ x̂

˙̃
b = −

˙̂
b = −

1

γ b
x̃u

Invariant set: x̃ = 0.

This proves that x̃→ 0.

(The parameters ã and b̃ do not necessarily converge: u " 0.)



Back-Stepping Control Design

We want to design a state feedback u = u(x) that stabilizes

ẋ1 = f (x1) + �(x1)x2

ẋ2 = u
(7)

at x = 0 with f (0) = 0.

Idea: See the system as a cascade connection. Design
controller first for the inner loop and then for the outer.

u x2 x1∫
�(x1)

f ()

∫



Suppose the partial system

ẋ1 = f (x1) + �(x1)v̄

can be stabilized by v̄ = φ(x1) and there exists Lyapunov fcn
V1 = V1(x1) such that

V̇1(x1) =
dV1

dx1

(
f (x1) + �(x1)φ(x1)

)
≤ −W(x1)

for some positive definite function W.



The Trick

Equation (7) can be rewritten as

ẋ1 = f (x1) + �(x1)φ(x1) + �(x1)[x2 − φ(x1)]

ẋ2 = u

−φ (x1)

u x2 x1∫
�(x1)

f + �φ

∫



Introduce new state ζ = x2 − φ(x1) and control v = u− φ̇ :

ẋ1 = f (x1) + �(x1)φ(x1) + �(x1)ζ

ζ̇ = v

replacements

−φ̇ (x1)

u ζ x1∫
�(x1)

f + �φ

∫



Consider V2(x1, x2) = V1(x1) + ζ 2/2. Then,

V̇2(x1, x2) =
dV1

dx1

(
f (x1) + �(x1)φ(x1)

)
+
dV1

dx1
�(x1)ζ + ζ v

≤ −W(x1) +
dV1

dx1
�(x1)ζ + ζ v

Choosing

v = −
dV1

dx1
�(x1) − kζ , k > 0

gives
V̇2(x1, x2) ≤ −W(x1) − kζ

2

Hence, x = 0 is asymptotically stable for (7) with control law
u(x) = φ̇(x) + v(x).

If V1 radially unbounded, then global stability.



Back-Stepping Lemma

Lemma: Let z = (x1, . . . , xk−1)T and

ż = f (z) + �(z)xk

ẋk = u

Assume φ(0) = 0, f (0) = 0,

ż = f (z) + �(z)φ(z)

stable, and V (z) a Lyapunov fcn (with V̇ ≤ −W). Then,

u =
dφ

dz

(
f (z) + �(z)xk

)
−
dV

dz
�(z) − (xk − φ(z))

stabilizes x = 0 with V (z) + (xk − φ(z))2/2 being a Lyapunov
fcn.



Strict Feedback Systems

Back-stepping Lemma can be applied to stabilize systems on
strict feedback form:

ẋ1 = f1(x1) + �1(x1)x2

ẋ2 = f2(x1, x2) + �2(x1, x2)x3

ẋ3 = f3(x1, x2, x3) + �3(x1, x2, x3)x4

...

ẋn = fn(x1, . . . , xn) + �n(x1, . . . , xn)u

where �k ,= 0

Note: x1, . . . , xk do not depend on xk+2, . . . , xn.



Back-Stepping

Back-Stepping Lemma can be applied recursively to a system

ẋ = f (x) + �(x)u

on strict feedback form.

Back-stepping generates stabilizing feedbacks φ k(x1, . . . , xk)
(equal to u in Back-Stepping Lemma) and Lyapunov functions

Vk(x1, . . . , xk) = Vk−1(x1, . . . , xk−1) + [xk − φ k−1]
2/2

by “stepping back” from x1 to u

Back-stepping results in the final state feedback

u = φn(x1, . . . , xn)



Example

Design back-stepping controller for

ẋ1 = x
2
1 + x2, ẋ2 = x3, ẋ3 = u

Step 0 Verify strict feedback form
Step 1 Consider first subsystem

ẋ1 = x
2
1 + φ1(x1), ẋ2 = u1

where φ1(x1) = −x
2
1
− x1 stabilizes the first equation. With

V1(x1) = x
2
1
/2, Back-Stepping Lemma gives

u1 = (−2x1 − 1)(x
2
1 + x2) − x1 − (x2 + x

2
1 + x1) = φ2(x1, x2)

V2 = x
2
1/2+ (x2 + x

2
1 + x1)

2/2



Step 2 Applying Back-Stepping Lemma on

ẋ1 = x
2
1 + x2

ẋ2 = x3

ẋ3 = u

gives

u = u2 =
dφ2
dz

(
f (z) + �(z)xn

)
−
dV2

dz
�(z) − (xn − φ2(z))

=
�φ2
�x1

(x21 + x2) +
�φ2
�x2
x3 −

�V2
�x2

− (x3 − φ2(x1, x2))

which globally stabilizes the system.



Hybrid Control

Control problems where there is a mixture between continuous
states and discrete state variables.

Continuous states: position, velocity, temperature, pressure

Discrete states: on/off variables, controller modes, loss of
actuators, loss of sensors, relays, etc

Discontinuous differential equations

Much active field, much left to understand



Example of hybrid control

Control law that switches between different modes, e.g.
between

◮ Time optimal control – during large set point changes
◮ Linear control – close to set point



Aircraft Example

2

K1

+

+

K

-

-n z

a lim

e1

e2

a

2d

1

q, a

d

max

r

d

(Branicky, 1993)



Phase Plane

−4 −2 0 2 4
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No common quadratic Lyapunov function exists.

A1 =

[
−5 −4
−1 −2

]
A2 =

[
−2 −4
20 −2

]



Piecewise quadratic Lyapunov functions

V (x) =

{
x∗Px if x1 < 0
x∗Px +ηx2

1
if x1 ≥ 0

The matrix inequalities

A∗
1P+ PA1 < 0

P > 0

A∗
2(P +ηE∗E) + (P +ηE∗E)A2 < 0

P+ηE∗E > 0

with E = [1 0], have the solution P = diag{1, 3}, η = 7.



Flower Example
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Next Lecture

◮ Optimization.

Read chapter 18 in [Glad & Ljung] for preparation.


