Lecture 13 — Nonlinear Control Synthesis Cont’d

Today’s Goal: To understand the meaning of the concepts

@ Gain scheduling

@ Internal model control
@ Model predictive control
@ Nonlinear observers

@ Lie brackets

Material:

@ Lecture notes

@ Internal model, more info in e.g.,

@ Section 8.4 in [Glad&Ljung]
@ Ch 12.1 in [Khalil]
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Gain Scheduling

Controller

parameters Gain
schedule

Operating
condition

Command

signal C_omrol

signal
Controller Process Output

Example of scheduling variables

@ Production rate
@ Machine speed
@ Mach number and dynamic pressure

Compare structure with adaptive control!
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Without gain scheduling
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Gain Scheduling

@ state dependent controller parameters.
° K =K(q)

@ design controllers for a number of operating points.
@ use the closest controller.

Problems:

@ How should you switch between different controllers?
@ Bumpless transfer

@ Switching between stabilizing controllers can cause
instability.
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o Gain scheduling

¢ Internal model control
o Model predictive control
o Nonlinear observers

o Lie brackets
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Internal Model Control

Q(s) G(s)

Feedback from model error y — 3.
Design: Choose G ~ G and @ stable with @ ~ G~1.
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Two equivalent diagrams

Anders Rantzer Lecture 13, Nonlinear Control Synthesis



1

G6) =15
Choose T
Q= 1+7s

Gives the Pl controller

1
C = 1+sTy =£<1+_>
ST T Tis
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Internal Model Control Can Give Problems

@ Unstable G
@ @ # G~! due to RHP zeros

@ Cancellation of process poles may show up in some
signals
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Internal Model Control with Static Nonlinearity

Include the nonlinearity in the model in the controller.
Choose @ ~ G 1.
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Example (cont’d)

Assume r = 0 and G = G:

1+sTy 1
147 y+ 1+Tsv
Same as before if |u| < umax: Integrating controller.
If |u| > umax then

u=—-Q(y— @v) =

_ 1+sTy + Umax
1+7s 2l 1+7s
No integration. (A way to implement anti-windup.)
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Gain scheduling

Internal model control
Model predictive control
Nonlinear observers

Lie brackets
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Model Predictive Control — MPC

M

., _reference r

r—
RS
e

past output y ! j
|

| predicted outputy 3
: i

_‘_'_‘ : control inputu |

t-1 t+1 - t+N t+M

@ Derive the future controls u(t +j), j=0,1,...,N—1
that give an optimal predicted response.

Q Apply the first control u(z).
© Start over from 1 at next sample.

Anders Rantzer Lecture 13, Nonlinear Control Synthesis



What is Optimal?

Minimize a cost function, V, of inputs and predicted outputs.

u(t+N—1) y(t+ M)
VZV(UhI,t)a Ut= ) Yvif:
u(t) y(t + 1)¢)
V often quadratic
V(U,Y) =YQ,Y, + UL Q.U; (1)

= linear controller

u(t) = —LE(t|t)
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Model Predictive Control

Flexible method
* Many types of models for prediction:
@ state space, input—output, step response, FIR filters
* MIMO
* Time delays
Can include constraints on input signal and states

Can include future reference and disturbance information

+

+ +

— On-line optimization needed
— Stability (and performance) analysis can be complicated

Typical application:
Chemical processes with slow sampling (minutes)
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A predictor for Linear Systems

Discrete-time model

x(t+ 1) = Ax(¢) + Bu(t) + Byvi(t)
y(t) = Cx(t) + va(?)

Predictor (v unknown)

t=0,1,...

X(t+ k4 1]t) = AZ(t + k|t) + Bu(t + &)
5t + E|t) = CZ(t + k|t)
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The M -step predictor for Linear Systems

x(t|t) is predicted by a standard Kalman filter, using outputs up
to time ¢, and inputs up to time ¢ — 1.

Future predicted outputs are given by

u(t+M —1)
y(t + M|t) CAM CB CAB CA%B :
: = 5 X(t]t)+ 0 CB CAB ... u(t + N —1)
y(t+ 1]t) CA : E ' : :
u(t)

Y; = D,x(t|t) + D, U,
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Limitations on control signals, states and outputs,
@ <G |xi() < Cr ly@) <Gy,

leads to linear programming or quadratic optimization.

Efficient optimization software exists.
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Design Parameters

Model

M (look on settling time)

N as long as computational time allows

If N <M —1assumptiononu(t+ N),...,u(t + M — 1)
needed (e.g., =0, =u(t+ N —1).)

° Q,, @, (trade-offs between control effort etc)

o C,, C, limitations often given

@ Sampling time

© 6 ¢ ¢

Product: ABB Advant
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Example—Motor

A [1 0.139] . B= [0.214] &N (1 0]

0 0.861 2.786
!
Minimize V(U;) = ||Y; — R|| where R = | : |, r=reference,
r
M=8N=2ult+2)=ut+3)=u(t+7) =...=0
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Example—Motor

CA8 CA®B CA"B )
t
Yi=| : s+ | : 5 [u(u(t) )]
CA 0 CB
= D,x(t) + D, U,
Solution without control constraints
U =—DI'p,)'DI'D.x+ (DI'D,)'DIR =
__[—250 -0.18 x1(¢) —r
- 2.77 0.51 x9(2)

Use
u(t) = —2.77(x1(¢) — r) — 0.51x9(2)

Anders Rantzer Lecture 13, Nonlinear Control Synthesis



Example—Motor—-Results

No control constraints in opti- Control constraints |u(¢)|<1in
mization (but in simulation) optimization.
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o Gain scheduling

o Internal model control
o Model predictive control
¢ Nonlinear observers

o Lie brackets
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Nonlinear Observers

What if x is not measurable?
%= f(x,u), y=h(x)

Simplest observer (open loop — only works for as. stable
systems). _
x=f(x,u)

Correction, as in linear case,

Choices of K

@ Linearize f at x¢, find K for the linearization
@ Linearize f at x(¢), find K (¢) for the linearization

Second case is called Extended Kalman Filter
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A Nonlinear Observer for the Pendulum

Control tasks:

@ Swing up

@ Caich

@ Stabilize in upward
position

The observer must to be valid
for a complete revolution
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A Nonlinear Observer for the Pendulum

d26
—— =sinf@ +ucosé
dt?
xl =] 9’ xz =] % =
dx1
iy 98
dt 7?2
{17 =sinx; +ucosx
Observer structure:
dxq
— =& +ki(x1 — %
7 2 1(x1 — %1)
dx .
d—t2 = sin X7 + u cos X1 +k2(x1 = 561)
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A Nonlinear Observer for the Pendulum

Introduce the error ¥ = £ — x

dxq 7S

W = —klxl + X9

% = sin & — sinx1 + u(cos &1 — cos x1) — ko1
d X1 -\ —k1 1] |%1 0
dt ch} - [—k2 o] Lzz s

v =2sin % (cos (%1 + %) —usin(x1 + %))

X1 v

G(s)
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Stability with Small Gain Theorem

The linear block:

1
G(S) g S2 3l kls + k2
1
|G(iw) 2 = 0* + (k2 — 2ky)0? + k2
= (0% — kg + F2/2)? — k1 /4 + B2k
— L ifr2 <2k
Yo =max|G(io)| = § VER-FHA 7
£ if k2 > 2k,
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Stability with Small Gain Theorem

v =2sin % (cos (%1 + %) —usin(x; + %))
o] < 1&1]y/1 + uge, = BIZ4
The observer is stable if yg < 1

2k = k if & \/2
- ko > ﬂ N A
ﬁa IfklZ\/
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A Nonlinear Observer for the Pendulum

Control Signal

0 1 2 8 Estir%ated ansgular ve?ocity
T
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o Gain scheduling

o Internal model control
o Model predictive control
o Nonlinear observers

o Lie brackets
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Controllability

Linear case
x =Ax + Bu

All controllability definitions coincide

0 — x(T),

x(0) — 0,

x(0) = x(T)
T either fixed or free

Rank condition System is controllable iff
W, = [B AB ... An—lB] full rank

Is there a corresponding result for nonlinear systems?
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Lie Brackets

Lie bracket between f(x) and g(x) is defined by

Example:
[cosxg] 52 [9611] ’
8

LY eE

[cos X9 + sin xg ]
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Why interesting?

%= g1(x)ug + g2 (x)ug

(1,0), te€ [0,€]

(0,1), t€ [e,2¢]
(—1,0), te€ [2¢3¢€]
(0,—1), t€ [3¢,4¢€]

gives motion x(4¢) = x(0) + €2[g1,92] + O(3)

t 3 t t

0 ¥, = lim (V@Y e) o))"
@ The system is controllable if the Lie bracket tree has full

rank (controllable=the states you can reach from x = 0 at fixed time 7' contains a ball around x = 0)

@ The motion (u1,ug) =
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The Lie Bracket Tree

[92,[91,92]]
[91,[91,92]]

(91,191, [91,42]1] o1, 191,9201l (91,92, [91/82]]] Y92, (91, 92]1]
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Parking Your Car Using Lie-Brackets

x 0 cos(¢ + 0)
d |yl |0 sin(g + )
di lo| = |o™ sin()

0 1 0
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Parking the Car

Can the car be moved sideways?

Sideways: in the (— sin(¢), cos(¢), 0,0)T -direction?

l91,92] = 22, — P1g
1,92l = o~ o 92
0 0 —sin(p+06) —sin(e+6) 0
_ |0 0 cos(p+6) cos(p+0) 0 _o
o o 0 cos(6) 0
00 0 0 1
(—sin(g +6)
| cos(p+0) | . . . /
= cos(6) =: g3 = “wriggle
0
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Once More

[ = 992 993
g3,92 o gs O g2 =
—sin(p)
= Coso(q)) = “sideways”
0

The motion [gs, 92| takes the car sideways.

(—sin(@),cos(9))
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The Parking Theorem

You can get out of any parking lot that is bigger than your car.
Use the following control sequence:

Wriggle, Drive, ~Wriggle(this requires a cool head), —Drive
(repeat).
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Gain scheduling

Internal model control
Model predictive control
Nonlinear observers

Lie brackets

Extra: Integral quadratic constraints
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Integral Quadratic Constraint

The (possibly nonlinear) operator A on L' [0, 00) is said to
satisfy the IQC defined by I1 if

© /6\(ia)) ( ; /6\(ia))
/_w[(Av)(iw)] H(“’)[(Av)(iw)]d“’zo

for all v € Lg[0, 00).
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IQC Stability Theorem

TA

G(s) [=—( =—

Let G(s) be stable and proper and let A be causal.

For all 7 € [0, 1], suppose the loop is well posed and 7A
satisfies the IQC defined by I1(iw). If

[ 6t ]*n(iw) 0 <0 oroe o

then the feedback system is input/output stable.
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A structure M(iw) Condition

A passive o }

TYCOTESTN i (i) > 0

5 € [-1,1] [ 5(5;“’)) _‘;é"(‘;’w) ] e
5(t) € [-1,1] o
A =e® -1 [ i & —x(()ia)) ] 2max|9}|os(: )si1=1(9a)/2)
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A Matlab toolbox for system analysis

http://www.ee.mu.oz.au/staff/cykao/

2l ]
eSS )

—O— G -

>> abst_init_iqc;

>> G = tf([10 0 0],[1 2 2 1]);
>> e = signal

>> w = signal

>> y = -Gx(etw)

>> w==iqc_monotonic (y)
>> iqc_gain_tbx(e,y)
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A servo with friction

Gain2  Saturation

Step
.
EE -
0157+ Sum1  Integrat Integrator1 S
. ntegrator ntegrator cope
Gain1 Sum Gain Transfer Fcn 9 9 P
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An analysis model defined graphically

monotonic with
restrict rate

performance

252425+1
0.0152+s+.01

Sum Gain Sum1 Integrator Integrator1
Transfer Fcn
+¢
+
Sum2

Exp(-ds)-1 |«

uncertain delay
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z iqc_gui(’fricSYSTEM’)
extracting information from fricSYSTEM ...
scalar inputs: 5

states: 10
simple gq-forms: 7

LMI #1 size = 1 states: O
LMI #2 size = 1 states: O
LMI #3 size = 1 states: O
LMI #4 size = 1 states: O
LMI #5 size = 1 states: O

Solving with 62 decision variables ...

ans = 4.7139
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A library of analysis objects

P =
for @y

popov IQC polytope encapsulated odd deadzone

whie e TS >@ ’EA I

performance -,
polytope with

sector+popov st rate diagonal structure

performance
Transfer Fon  Zero-Pole

gl > dislp
sector —_ LTI unmodeled
sat-int

norm bounded

Gain Matrix
Gain

unknown const
3

49

monotonic with
Sum ID()i<k p restrict rate
Step Source

encapsulated deadzone

TV scalar
PR =1,
<k P
d Window odd slope nonlinearity
STV scalar

In out
harmonic P slope nonlinearity

Anders Rantzer Lecture 1




The friction example in text format

d=signal; % disturbance signal
e=signal; % error signal
wl=signal; % friction force
w2=signal; % delay perturbation
u=signal; % control force
v=tf(1,[1 0])*(u-wl) % velocity

x=tf (1, [1 0])*v; % position

e==d-xX-w2;

u==10*t£f([2 2 1],[0.01 1 0.01])*e;
wl==iqc_monotonic(v,0,[1 5],10)
w2==iqc_cdelay(x, .01)
iqc_gain_tbx(d,e)
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Summary

e Gain scheduling

e Internal model control

e Model predictive control
e Nonlinear observers

e Lie brackets

e Extra: Integral quadratic constraints
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Next: Lecture 14

@ Course Summary
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