Lecture 9 — Nonlinear Control Design

» Exact-linearization
» Lyapunov-based design
> Lab2
» Adaptive control
» Backstepping
» Hybrid / Piece-wise linear control
» NOTE: Only overview!

Exact Feedback Linearization

Idea:

Find state feedback u = u(x,v) so that the nonlinear system
x=f(x)+g9(x)u
turns into the linear system
% =Ax + Bv

and then apply linear control design method.

Introduce new control variable v and let
u = mf? + d + mlg cos 6

Then
b=v

Choose e.g. a PD-controller
v =10(8,8) = kp(Oref — 0) — kb
This gives the closed-loop system:
0+ kg0 + kp8 = kpOret

Hence, u = m€2[k,(8 — BOrer) — kab] + d6 + még cos 6

Computed torque

The computed torque
(also known as "Exact linearization", "dynamic inversion" , etc. )
u=M(6)+C(6,0)8+G(0)

; @)
v = Kp(eref - 9) - Kde,

gives closed-loop system
6+ Kdé + er = erRef
The matrices K, and K, can be chosen diagonal (no

cross-terms) and then this decouples into n independent
second-order equations.

Course Outline

Lecture 1-3  Modelling and basic phenomena
(linearization, phase plane, limit cycles)

Lecture 2-6  Analysis methods
(Lyapunoy, circle criterion, describing functions)

Lecture 7-8  Common nonlinearities
(Saturation, friction, backlash, quantization)

Lecture 9-13 Design methods
(Lyapunov methods, Backstepping, Optimal control)

Lecture 14 Summary

Exact linearization: example [one-link robot ]

7Y

me26 +d6 + mégcos6 = u

where d is the viscous damping.
The control u = 7 is the applied torque

Design state feedback controller u = u(x) with x = (8, )7

Multi-link robot (n-joints)

General form
M(0)6+C(6,0)0+G(0) =u, 6€R"
Called fully actuated if n indep. actuators,

M n x ninertia matrix, M = MT >0
COH n x 1 vector of centrifugal and Coriolis forces
G n x 1vector of gravitation terms

Lyapunov-Based Control Design Methods

x= f(x7u)

» Select Lyapunov function V' (x)for stability verification
» Find state feedback u = u(x) that makes V decreasing
» Method depends on structure of f

Examples are energy shaping as in Lab 2 and e.g.

Back-stepping control design, which require certain f
discussed later.



Lab 2 : Energy shaping for swing-up control

] [movie]

Use Lyapunov-based design for swing-up control.

Example of Lyapunov-based design

Consider the nonlinear system

X1 = —3x1 + 2x1x§ +u 2

. 3
X9 = —x2 — X9,

Find a nonlinear feedback control law which makes the origin
globally asymptotically stable.

We try the standard Lyapunov function candid ate
1 2 2
V(x1,%2) = 3 (xl + xz) ,

which is radially unbounded, V(0,0) = 0, and
V(xl,xz) >0 V(xl, xz) # (0, 0).

Lab 2 : Energy shaping for swing-up control

Rough outline of method to get the pendulum to the upright
position

» Find expression for total energy E of the pendulum
(potential energy + kinetic energy)

» Let E, be energy in upright position.

> Look at deviation V = 1(E — E,)2 > 0

» Find "swing strategy" of control torque u such that ‘2—‘{ <0

Example - cont’d

V = %121 + Xoxp = (—3x1 + 2x1x§ +u)x; + (—xg — Xg)Xg

2,2
= —3x% — xZ+ux;+2x7x5 — x5

We would like to have
1% <0 V(xl, x2) # (0, 0)
Inserting the control law, u = —2x1x§, we get

V = —8xf—x2 —2x2x2 + 22242 —xj = —3xi—xi—x3 <0, Vx#£0
————

=0

Consider the system
xl = xg

©)

Xo=u
Find a globally asymptotically stabilizing control law u = u(x).
Attempt 1: Try the standard Lyapunov function candidate
1
Vixnxe) = 5 (x% + x%) ,
which is radially unbounded, V (0,0) = 0, and
V(xl,xg) >0 V(xl, xz) # (0, 0)

V=x'1x1+x'2x2=x§’~x1+u~x2=x2(x§x1+u)=—x%§0
—
e

where we chose

u=—x9 — x%xl
Attempt 2:
. 3
X1 = Xg
5
92,'2 =u ( )

Try the Lyapunov function candidate

1 1
V(x1,x2) = Ex% + Zx%,

which satisfies
» V(0,0) =0
> V(xlwxz) > Oa v(xb xz) # (07 0)
» radially unbounded,

ar = X121 +3’c2x§ = xg’(xl +u)= —x% <0

u = —x1 — xoif We use u = —x1 — xo

However V = 0 as soon as xz = 0 (Note: x; could be anything).
According to LaSalle’s theorem the set

E ={x|V =0} = {(x1, 0)} Va;

What is the largest invariant set M ?

Plugging in the control law u = —xg — x2x1, we get

x1=x§’

4)

Xg = —X2 — x%xl

and we see that if we start anywhere on the line {(x1, 0)} we
will stay in the same point as both &; = 0 and %3 = 0, thus M=E
and we will not converge to the origin, but get stuck on the line
X9 = 0.

Draw phase-plot with e.g., pplane and study the behaviour.

With
u=—xX1—X2
we get the dynamics

xlzxg

(6)

Xg = —X1 — X2

V =0if xg = 0, thus
E={x|V =0} ={(x1,0)} Vs
However, now the only possibility to stay on xg = 0is if x; = 0, (

else x, # 0 and we will leave the line x; = O).
Thus, the largest invariant set

M = (0,0)

According to the Invariant Set Theorem (LaSalle) all solutions
will end up in M and so the origin is GAS.

Draw phase-plot with e.g., pplane and study the behaviour.



Adaptive Noise Cancellation Revisited

U | b | X X
st+a _
> x
‘ta

X +ax =bu

X+ax=bu
Introduce ¥ =x —%, d=a—a, b=>b—b.

Want to design adaptation law so that x — 0

Back-Stepping Control Design

Let us try the Lyapunov function
1 » ~
V= 5(a“c”z + 7402 + 75b?)
V = & + 7486 + y5bb =
= %(—aF — G% + bu) + Yot + 75bb = —ai®
where the last equality follows if we choose

- L 1 = = -
a=-—0a=—xx b=—-b=——xu
Ya Vb

Invariant set: x = 0.
This proves that x — 0.

(The parameters a and b do not necessarily converge: u = 0.)

We want to design a state feedback u = u(x) that stabilizes

9:61 i f(x1) + g(x1)x2 @
X9 =U
atx = 0 with £(0) = 0.

Idea: See the system as a cascade connection. Design
controller first for the inner loop and then for the outer.

The Trick

Suppose the partial system
&1 = f(x1) +g(x1)0

can be stabilized by o = ¢(x1) and there exists Lyapunov fcn
V1 = Vi(x1) such that

Viler) = 90 (f(xl) n g<x1)¢(x1>) < W(x)

for some positive definite function W.

Equation (7) can be rewritten as

&1 = f(x1) + g(x1)@(x1) + g (1) [x2 — ¢ (x1)]

Xo=U

Consider Vy(x1,x2) = Vi(x1) + {2/2. Then,

. av- 'A%
Vatar,ze) = G0 (Flan) + ge)oton) ) + G gl + ¢
dV;
< —W(x1) + d—lg(xl)g +¢v
%1
Choosing
RAZ
U——ng(xl)_kg, k>0
gives

Vz(xl,x'z) S —W(xl) —_ ng

Hence, x = 0 is asymptotically stable for (7) with control law
u(x) = ¢(x) + v(x).
If V1 radially unbounded, then global stability.

Introduce new state ¢ = xg — ¢(x1) and control v = u — ¢:

%1 = f(x1) + g(x1)d(x1) + 9(x1)¢

E=v
i(?—{ T |i|g(x1> o |
—¢(x1)

f+a¢

Back-Stepping Lemma

Lemma: Letz = (x1,...,%,_1)7 and
2= f(2) + 9(2)xr
Xp=u
Assume ¢(0) = 0, f(0) =0,
2= f(2) + 9(2)4(2)
stable, and V' (z) a Lyapunov fcn (with V- < —W). Then,

d¢

u= - <f(z) + g(z)xk> - d%g(z) — (2 — 9(2))

d

stabilizes x = 0 with V(2) + (x;, — ¢(2))?/2 being a Lyapunov
fen.



Strict Feedback Systems

Back-stepping Lemma can be applied to stabilize systems on
strict feedback form:

%1 = fi(x1) + g1(x1)x2
%g = fa(x1,%2) + g2(x1, %2)x3
%3 = f3(x1,%2,%3) + 93(%1, X2, %¥3) X4

Fn = [, %0) + Gn(X1,. ., %0)0
where g; # 0

Note: x1,...,x; do not depend on xj.9,...,%n.

Example

Back-Stepping

Back-Stepping Lemma can be applied recursively to a system
i = f(x) +g(x)u

on strict feedback form.

Back-stepping generates stabilizing feedbacks ¢p(x1,...,xz)
(equal to u in Back-Stepping Lemma) and Lyapunov functions

Vi(o1, .., x8) = Vo1 (%1, ., Xpe1) + [ — Pp-1]?/2

by “stepping back” from x; to u

Back-stepping results in the final state feedback

U= @n(x1,...,%)

Design back-stepping controller for

x1=x%+x2, Xog =X3, X3=1U

Step 0 Verify strict feedback form
Step 1 Consider first subsystem

32,'1 = x% + ¢1(x1), 9‘62 =Uux

where ¢1(x1) = —x% — x1 stabilizes the first equation. With
Vi(x1) = x2/2, Back-Stepping Lemma gives

uy = (—le — 1)(x% + xz) —X1— (QCQ + x% + xl) = ¢2(3€1,X2)

Vo = x2/2 4 (x2 + 2% 4+ x1)%/2

Hybrid Control

Control problems where there is a mixture between continuous
states and discrete state variables.

Continuous states: position, velocity, temperature, pressure

Discrete states: on/off variables, controller modes, loss of
actuators, loss of sensors, relays, etc

Discontinuous differential equations

Much active field, much left to understand

Aircraft Example

max —| % |19

(Branicky, 1993)

Step 2 Applying Back-Stepping Lemma on

N 2
X1 = X7 + x2

X9 = X3
X3=1u
gives
d dV.
w=ra = %2 (1) + 9@, ) - G200 - (o1~ 02(0)
o Io] A%
= a%f(x% +x3) + a%zxs - 8722 — (w3 — P2 (x1,%2))

which globally stabilizes the system.

Example of hybrid control

Control law that switches between different modes, e.g.
between

» Time optimal control — during large set point changes
» Linear control — close to set point

Phase Plane

Lo
@ N W o e oN oW

No common quadratic Lyapunov function exists.

Lo

- -2 —4
m-1 5 }

Az = [20 -2



Piecewise quadratic Lyapunov functions

_ | x*Px ifx1 <0
Vix) = { x*Px +1mx?2  ifx; >0
The matrix inequalities
AiP+PA; < O
P > 0
A5(P+nE'E)+ (P+nE*E)A2 < 0
P+nE'E > 0
with E = [1 0], have the solution P = diag{1,3},n = 7.

Next Lecture

Flower Example

» Optimization.

Read chapter 18 in [Glad & Ljung] for preparation.




