Lecture 9 — Nonlinear Control Design

@ Exact-linearization

@ Lyapunov-based design

@ Lab 2
@ Adaptive control
@ Backstepping

@ Hybrid / Piece-wise linear control
@ NOTE: Only overview!
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Course Outline

Lecture 1-3  Modelling and basic phenomena
(linearization, phase plane, limit cycles)

Lecture 2-6  Analysis methods
(Lyapunov, circle criterion, describing functions)

Lecture 7-8 Common nonlinearities
(Saturation, friction, backlash, quantization)

Lecture 9-13 Design methods
(Lyapunov methods, Backstepping, Optimal control)

Lecture 14 Summary
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Exact Feedback Linearization

Idea:

Find state feedback v = u(x,v) so that the nonlinear system
x=f(x) +g(x)u
turns into the linear system
x =Ax + Bv

and then apply linear control design method.
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Exact linearization: example [one-link robot]

V. 0

me?6 +dO + mlgcos 0 = u
where d is the viscous damping.
The control u = 7 is the applied torque

Design state feedback controller u = u(x) with x = (8,6)”
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Introduce new control variable v and let
u = ml%v + d6 + mlg cos 6

Then
6=v

Choose e.g. a PD-controller
v =10(0,0) = kp(Oref — 0) — kb
This gives the closed-loop system:
0+ kg6 + kpb = ky0ret

Hence, u = m#2[k,(0 — Brer) — kq0] + d6 + mLg cos 6
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Multi-link robot (n-joints)

General form
M(6)6 +C(6,0)0 + G(6) =u, e R

Called fully actuated if n indep. actuators,

M  n xninertia matrix, M = MT >0
CO n x 1 vector of centrifugal and Coriolis forces
G n x 1 vector of gravitation terms
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Computed torque

The computed torque
(also known as "Exact linearization", "dynamic inversion" , etc. )

u=M(@O)v+C(6,06)6+ G(6)

. 1
U=Kp(9ref—9)—Kd9, ( )

gives closed-loop system
é + Kde 45 er = erRef

The matrices K; and K, can be chosen diagonal (no
cross-terms) and then this decouples into n independent
second-order equations.
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Lyapunov-Based Control Design Methods

@ Select Lyapunov function V (x)for stability verification
@ Find state feedback u = u(x) that makes V' decreasing
@ Method depends on structure of f

Examples are energy shaping as in Lab 2 and e.g.
Back-stepping control design , which require certain f
discussed later.
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Lab 2 : Energy shaping for swing-up control

i [movie]

Use Lyapunov-based design for swing-up control.
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Lab 2 : Energy shaping for swing-up control

Rough outline of method to get the pendulum to the upright
position

@ Find expression for total energy E of the pendulum
(potential energy + kinetic energy)

@ Let E, be energy in upright position.

@ Look at deviation V = 3(E — E,)% > 0

@ Find "swing strategy" of control torque u such that d—V <0
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Example of Lyapunov-based design

Consider the nonlinear system

X1 = —3x1 + 2x1x§ +u (2)

- 3
X9 = —x2 — X9,

Find a nonlinear feedback control law which makes the origin
globally asymptotically stable.
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Example of Lyapunov-based design

Consider the nonlinear system
X1 = —3x1 + 2x1x§ +u (2)

- 3
X9 = —x2 — X9,

Find a nonlinear feedback control law which makes the origin
globally asymptotically stable.

We try the standard Lyapunov function candidate

1
V(x1,2x9) = 3 (x% + x%) ,

which is radially unbounded, V' (0,0) = 0, and
V(xl,xg) >0 V(xl, x2) #+ (0, 0)
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Example - contd

V= X1X1 + X9x9 = (—3x1 1 2x1x§ + u)x1 + (—xg’ = xQ)JCQ

4
= —3x2 — x24ux;+2x2x2 — x5

We would like to have

V<0 V(xl, x2) #* (0, 0)
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Example - contd

V = 2121 + %oxp = (—3x1 + 2x1%5 + u)x1 + (—x5 — x9)x2
= —3x2 — xatux;+2x3x2 — x5
We would like to have
V<0 V(x1, x2) # (0, 0)
Inserting the control law, u = —2x7x2, we get

V = —3x2—x2 —2x2x2 + 2x%x2 —x5 = —8x2—x2—x5 <0, Vx#0
1~ %2 1%2 1% —Xg 1~ X3 —Xg

=0
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Consider the system
o= ©

5c2=u

Find a globally asymptotically stabilizing control law u = u(x).
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Consider the system

xlzxg

®3)

5c2=u

Find a globally asymptotically stabilizing control law u = u(x).
Attempt 1: Try the standard Lyapunov function candidate

1
V(x1,%2) = 3 (x% + x%) ,

which is radially unbounded, V (0,0) = 0, and
V(x1,x2) > 0 V(x1, x2) # (0, 0).

V=x'1x1+x'2x2=x§’-x1+u-x2=x2(x%x1+u)=—x§§0
~———
2.4

where we chose
u=—xX9 — x%xl
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However V = 0 as soon as x, = 0 (Note: x; could be anything).
According to LaSalle’s theorem the set

E ={x|V =0} ={(x1, 0)} Vx1

What is the largest invariant set M ?

Plugging in the control law u = —xg — x2x7, we get

561=.’)C§

(4)

.7272 = —X9 — x%xl

and we see that if we start anywhere on the line {(x1, 0)} we
will stay in the same point as both x; = 0 and x5 = 0, thus M=E
and we will not converge to the origin, but get stuck on the line
X9 = 0.

Draw phase-plot with e.g., pplane and study the behaviour.
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Attempt 2:

561=.')C§

(5)

Xo=1Uu

Try the Lyapunov function candidate

1 1
V(x1,2x2) = éx% + ng,

which satisfies
o V(0,0)=0
o V(xl,xg) > 0, V(xl, x2) #* (0, 0)
@ radially unbounded,

ar = X1X1 +a‘c2x§‘ = xg(xl +u)= —x% <0

u=—x1—xgif weuseu =—x; — x9
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With
uUu=—X1— X9

we get the dynamics

i = (6)

X9 = —X1 — X9

V =0 if xg = 0, thus
E = {x|V =0} = {(x1, 0)} Vx;
However, now the only possibility to stay on xo = 0isif x;1 = 0, (

else %, # 0 and we will leave the line x; = 0).
Thus, the largest invariant set

M = (0,0)

According to the Invariant Set Theorem (LaSalle) all solutions
will end up in M and so the origin is GAS.

Draw phase-plot with e.g., pplane and study the behaviour.
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Adaptive Noise Cancellation Revisited

u b X x
s+a Z.
A
2 X
‘a

X +ax =bu
X+ ax = bu
Introducex =x—x, a=a—a, b=>b—-0>.

Want to design adaptation law so that x — 0
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Let us try the Lyapunov function

V= %(562 + Ya@2 + 7pb%)
V = Xx + y.aa + beZ =
— %(—aF — G% + bu) + Yo + 7bb = —aF?
where the last equality follows if we choose

A < 5N 1_

a=—a=—xx b=-b=——xu
Ya Yo

Invariant set; x = 0.

This proves that x — 0.

(The parameters a and b do not necessarily converge: u = 0.)
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Back-Stepping Control Design

We want to design a state feedback u = u(x) that stabilizes

9:61 i f(x1) + g(x1)xe @
X9 =U
at x = 0 with £(0) = 0.

Idea: See the system as a cascade connection. Design
controller first for the inner loop and then for the outer.

u X2 X1

I e Y J j
0]
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Suppose the partial system
x1 = f(x1) + g(x1)0

can be stabilized by & = ¢(x1) and there exists Lyapunov fcn
V1 = Vi(x1) such that

Vi) = (f(xl) i g<x1)¢(x1)) < W)

for some positive definite function W.
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The Trick

Equation (7) can be rewritten as

%1 = f(x1) + g(x1)@(x1) + g(x1) [x2 — @ (x1)]

.562 =u
1 ﬁﬁ%g(xn /T
—9(x1)
f+g9
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Introduce new state ¢ = xo — ¢(x) and control v = u — ¢:

x1 = f(x1) + g(x1)9(x1) + g(x1)§

{=v
iﬁ% Nk [ =
—¢(x1)

f+99
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Consider Vy(x1,x2) = Vi(x1) + £2/2. Then,

Voo az) = 51 <f(x1) ; g(x1>¢(x1)) + T gw)¢ + o
< W(x) + ‘fli’llg(xl)g e

Choosing
vy
v——d—mg(xl)—kf, k>0
gives .
Vz(xl,xg) S —W(xl) it kgz
Hence, x = 0 is asymptotically stable for (7) with control law

u(x) = (x) + v(x).
If V1 radially unbounded, then global stability.
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Back-Stepping Lemma

Lemma: Letz = (xq,...,%,_1)" and

2= f(2) + 9(2)xk
xk =u

Assume ¢(0) = 0, f(0) =0,
z=f(2) +9(2)¢(2)
stable, and V(z) a Lyapunov fcn (with V < —W). Then,

u= <f(z) ‘ g(z)xk) ~ 2 5(0) ~ (x— 0()

stabilizes x = 0 with V (2) + (x, — ¢(2))?/2 being a Lyapunov
fcn.
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Strict Feedback Systems

Back-stepping Lemma can be applied to stabilize systems on
strict feedback form:

%1 = f1(x1) + g1(x1)x2
%9 = fa(x1,%2) + ga(x1,%2)x3
%3 = f3(x1,%2,%3) + g3(x1, %2, x3)x4

Xp, = fn(xl’---’xn) +gn(x1,---axn)u
where g, # 0

Note: x1,...,x, do not depend on xz,g,...,X,.
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Back-Stepping

Back-Stepping Lemma can be applied recursively to a system

x = f(x) +g(x)u
on strict feedback form.

Back-stepping generates stabilizing feedbacks ¢p(x1, ..., xz)
(equal to u in Back-Stepping Lemma) and Lyapunov functions

Vi(x1,. ., 2%) = Vi1 (%1, -+, Xp_1) + [0 — 05_1]%/2

by “stepping back” from x; to u

Back-stepping results in the final state feedback

u=¢,(x1,...,%n)
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Design back-stepping controller for

x1=x%—|—x2, X9 =X3, Xg=1Uu

Step 0 Verify strict feedback form
Step 1 Consider first subsystem

X1 = x% + ¢1(JC1), X9 = Uq

where ¢1(x1) = —x% — x1 stabilizes the first equation. With
Vi(xy) = x%/z, Back-Stepping Lemma gives

uy = (—2x1 — 1)(x§ + x9) —x1 — (2 + x% + x1) = Po(x1,22)

Vo = x%/2 + (22 +x% +x1)2/2
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Step 2 Applying Back-Stepping Lemma on

5c1=x%+x2

Xo = X3
JZI3 =u
gives
U=1ug= Oil(bzz (f(z) + g(z)xn> - a;szg z) — (x, — 02(2))
§¢2( x7 +xg) + gzzxs = ngzz — (%3 — @2 (x1,%2))

which globally stabilizes the system.
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Hybrid Control

Control problems where there is a mixture between continuous
states and discrete state variables.

Continuous states: position, velocity, temperature, pressure

Discrete states: on/off variables, controller modes, loss of
actuators, loss of sensors, relays, etc

Discontinuous differential equations

Much active field, much left to understand
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Example of hybrid control

Control law that switches between different modes, e.g.
between

@ Time optimal control — during large set point changes
@ Linear control — close to set point
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Aircraft Example

r @ ] Ij 1
— Al /U
A % q,
M‘L(Tg K: K |2 [
T

(Branicky, 1993)
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Phase Plane

|

754 :2\7”“”0/ 2 4
No common quadratic Lyapunov function exists.

A

—2 —4
S |

A2=[0 £9
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Piecewise quadratic Lyapunov functions

V(x) = x*Px ifx1 <O
)= x*Px +nx? ifx; >0

The matrix inequalities

AP+ PA;

P

A5(P+nE*E)+ (P+nE"E)Ay
P+nE'E

V- ANV A
©c o o o

with E = [1 0], have the solution P = diag{1,3}, n
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Flower Example

1 -1
2| -2
_3 \\ 3
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
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Next Lecture

@ Optimization.

Read chapter 18 in [Glad & Ljung] for preparation.
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