Lecture 5 — Input —output stability

or

“How to make a circle out of the point —1 + 07, and different
ways to stay away from it ...

Today’s Goal

To understand

» signal norms
» system gain
» bounded input bounded output (BIBO) stability

To be able to analyze stability using

» the Small Gain Theorem,
» the Circle Criterion,
» Passivity

Material

» [Glad & Ljung]: Ch 1.5-1.6, 12.3
[Khalil]: Ch 5-7.1; [Slotine & Li]: Ch.4.7-4.8

» lecture slides

Gain

Idea: Generalize static gain to nonlinear dynamical systems

The gain y of S should tell what is the largest amplification from
utoy

Here S can be a constant, a matrix, a linear time-invariant
system, etc

Question: How should we measure the size of u and y?

Signal Norms

A signal x(¢) is a function from R* to R.
A signal norm is a way to measure the size of x(t).

Examples

2-norm (energy norm): |lx|lz = 1/ fo* |x(¢)[2d¢

sup-norm: ||x||ec = sup;cg+ |x(t)]

The space of signals with ||x||s < oo is denoted L,.

Course Outline

Lecture 1-3  Modelling and basic phenomena
(linearization, phase plane, limit cycles)

Lecture 2-6  Analysis methods
(Lyapunoy, circle criterion, describing functions)

Lecture 7-8  Common nonlinearities
(Saturation, friction, backlash, quantization)

Lecture 9-13 Design methods
(Lyapunov methods, Backstepping, Optimal control)

Lecture 14 Summary

History

f(»)

For what G(s) and £(-) is the closed-loop system stable?

» Lur'e and Postnikov’s problem (1944)

» Aizerman’s conjecture (1949) (False!)

» Kalman'’s conjecture (1957) (False!)

» Solution by Popov (1960) (Led to the Circle Criterion)

Norms

A norm || - || measures size.
A norm is a function from a space Q to R*, such that for all
x,y € Q

> |lx]| >0 and |x]|=0 ¢ x=0

>l 4+ ol < lxll + [yl

> |lax|| = |af - ||x||, forall € R

Examples
Euclidean norm: ||x| = \/m
Max norm: ||x|| = max{|x1],..., |%a|}

Parseval's Theorem

Theorem If x,y € Ly have the Fourier transforms

X (iw) = /0 Yot dr,  Y(io) = /0 " oty

then o o
/0 T (O)x(t)dt = % /_ _Y(i0)X (j0)do.

In particular,

ol = [ (Pt = o [ X (i0)Pdo.
0 2r —00

lx|lz2 < oo corresponds to bounded energy.



System Gain

A system S is a map between two signal spaces: y = S(u).

u y
—] S ——
The gain of S is defined as y(S) = sup Wl _ sup IS Go)lla

wety lellz  wer, Il

Example The gain of a static relation y(¢) = oru(t) is

ou all|lu
lally _ el |,

7(a) = sup =
wer, lllz wer, Il

2 minute exercise: Show that y(S1S2) < ¥(S1)7(Ss2).

— So — Si1 |—

BIBO Stability

S }’(S) = sup ”y”Z
uer, |lll2

Definition
S is bounded-input bounded-output (BIBO) stable if y(S) < co.

Example: If x = Ax is asymptotically stable then
G(s) = C(sI — A)~!'B + D is BIBO stable.

“Proof” of the Small Gain Theorem

Existence of solution (ey, ez) for every (r1,r2) has to be verified
separately. Then

llellz < lIrallz + v (S2)lir2llz + ¥ (S1)lle1lle]

gives
Irllz + ¥ (S2)llr2ll2
1-7(S2)7(S1)

7(82)7(81) <1, [Ir1flz < 00, [Ir2llz < oo give [lex]l2 < oo.
Similarly we get

llealle <

lIralle + ¥ (S1)ll7 1l
eglly < W22 T FAS1)IITNI2
ezl < 5 = (507 (S2)

so also ey is bounded.

Example—Gain of a Stable Linear System

7@ 6t
1Gull2

G) = sup = sup |G(iw
7(@) = 20 Ty e, 6@

107l
10

Proof: Assume |G (iw)| < K for @ € (0,00) and |G (iw.)| = K
for some w,. Parseval's theorem gives

2 1 OO 2
= — Y@
ol = 57 [ I¥G0)Pdo

1 (< . .
~ 5n | 1G@P|U o) Pdo < K¥[ul?

Equality by choosing u(t) = sin @.t.

Example—Gain of a Static Nonlinearity

[f(x)] < Klx|,  f(z*) = Kx"
Kx
f(x)

u(t) y(2)

— () x

12 = /0 72 (u(®))dt < /0 K22()dt = K2|ul}3

u(t) = x*, ¢t € (0,00) gives equality =

lIxIl
7(f) = supycy, m =

The Small Gain Theorem

r e

ez re
Sa -~

Theorem
Assume S; and Sy are BIBO stable. If

7(S1)yr(S2) <1

then the closed-loop map from (r1,rg) to (ey, e2) is BIBO stable.

Linear System with Static Nonlinear Feedback (1)

Ky
f(v)
y
G(s):ﬁ and 0§%5K

7(G)=2andy(f) < K.

The small gain theorem gives that K € [0,1/2) implies BIBO
stability.



The Nyquist Theorem

0 |
OGO /\
X100 GQ) <

Theorem

The closed loop system is stable iff the number of
counter-clockwise encirclements of —1 by G(Q) (note: @
increasing) equals the number of open loop unstable poles.

:

The Circle Criterion

Case l: 0 <k <ks <o

kay f(y)
MU’ 1 %ﬁ
y  RC\E
N
G(iw)

Theorem Consider a feedback loop with y = Gu and
u = —f(y) +r. Assume G(s) is stable and that

)

0<ky < —=<ks.
y

If the Nyquist curve of G(s) does not intersect or encircle the
circle defined by the points —1/%; and —1/kg, then the
closed-loop system is BIBO stable from r to y.

Linear System with Static Nonlinear Feedback (2)

_1
y 0] K

-1 05 0 05 1 15 2

The “circle” is defined by —1/k; = —co and —1/kg = —1/K.

min Re G(iw) = —1/4

so the Circle Criterion gives that if K € [0,4) the system is
BIBO stable.

Proof of the Circle Criterion (cont’d)

"L (G (s) i
o ™
P ro R
gon w7
G(iw)
SGT gives stability for |G (iw)|R < 1 with G = _G
g Y ’ T14RG
R< 1 - ‘ LI k‘
|G(iw)| |G(iw)

Transform this expression through z — 1/z.

The Small Gain Theorem can be Conservative

Let f(y) = Ky for the previous system.

The Nyquist Theorem proves stability when K € [0, co).
The Small Gain Theorem proves stability when K € [0,1/2).

Other cases

G: stable system

» 0 < k1 < kg: Stay outside circle
» 0 = ky < kg: Stay to the right of the line Re s = —1/kq
» k1 < 0 < kg: Stay inside the circle

Other cases: Multiply £ and G with —1.

G: Unstable system
To be able to guarantee stability, 2; and k2 must have same
sign (otherwise unstable for & = 0)

» 0 < k1 < ko: Encircle the circle p times counter-clockwise
(if @ increasing)

» k1 < kg < 0: Encircle the circle p times counter-clockwise
(if @ increasing)

Proof of the Circle Criterion

Let & = (k1 + k2)/2 and f(y) = f(y) — ky. Then

=R

@ <kQ—k1
y |~ 2

ri e1 Y1
— G(S) —l 71
2o

Lyapunov revisited

Original idea: “Energy is decreasing”

x = f(x), x(0) = x¢
V(x(T)) = V(x(0)) <0
(+some other conditions on V)

New idea: “Increase in stored energy < added energy”

x = f(x,u), x(0) = x¢
y=h(x)

T
VET)-VEO < [ ebw) a @)
external power



Motivation

Will assume the external power has the form ¢(y,u) = yTu.

Only interested in BIBO behavior. Note that

3V > 0 with V(x(0)) = 0 and (1)
=

T
/ yTudt> 0
0

Motivated by this we make the following definition

A Useful Notation

Define the scalar produ ct

T
e = [ 57 Oute) ar
Cauchy-Schwarz inequality:

O w)r < |ylrlulr

where |y|lr = /(y,y)r. Note that |y|o, = [ly]l2.

Feedback of Passive Systems is Passive

ry el Y1
S1 T

Y2 eg ra

So -~

If S; and Sy are passive, then the closed-loop system from
(r1,72) to (y1,¥2) is also passive.

Proof: O, = {(y1, 7)1 + (Y2, T2)T
= {y1,r1 — y2)7 + (y2, 2 + y1)T
= (y1,e1)1 + (¥2,e2)7 > 0
Hence, (y,7)r > 0if (y1,e1)r > 0 and (ys,e2)7 > 0

A Strictly Passive System Has Finite Gain

If S is strictly passive, then y(S) < co.

Proof: Note that ||y||2 = lim7_ |¥|7-
e(ylt +[ulf) < Gw)r < lylr - ulr < lyll2 - lull

Hence, e|y|% < ||7|l2 - |lu||2, So letting T' — oo gives

1
Iolle < < llella

Passive System

Definition The system S is passive from u to y if

T
/ yTudt > 0, foralluandall T >0
0

and strictly passive from u to y if there 3¢ > 0 such that

T
/ yludt > e(|y% +|u%), foralluandall T >0
0

2 minute exercise:

Slﬂ

e T N
s |

4,871

Passivity of Linear Systems

Theorem An asymptotically stable linear system G(s) is
passive if and only if

Re G(iw) > 0, Yo >0
Itis strictly passive if and only if there exists ¢ > 0 such that
Re G(iw) > (1 + |G(iw)|?), VYo >0

Proof: See Slotine and Li p. 139 for the first part.
Example

1. .
G(s) = % is passive and

strictly passive, o
G(iw)

1 . X
G(s) = = is passive but not
S
strictly passive. T O

The Passivity Theorem

ri e; R
— S

Sa -

Theorem If Sj is strictly passive and Sg is passive, then the
closed-loop system is BIBO stable from r to y.



Proof of the Passivity Theorem

S strictly passive and Sy passive give

e(Inl + le1lf) < (1, en)r + (e, e2)r = (3, 7)1

Therefore
y1lF + (r1 — y2,71 — )7 < %(y,r)T
or
y1l7 + lyal? — 2(ve, ra) 7 + a7 < %(y:r)T
Finally

1 1
ol < 20mrabr + £0urdr < (242 ) blele

Letting T' — oo gives ||y||2 < C||r||2 and the result follows

Example—Gain Adaptation

Applications in channel estimation in telecommunication, noise
cancelling etc.

Process

G(s) J

Adaptation law:

& = —ruObm®) 5], 7>0.

Gain Adaptation is BIBO Stable

(6 —6")u

S is passive (Exercise 4.12), so the closed-loop system is BIBO
stable if G(s) is strictly passive.

Storage Function

Consider the nonlinear control system
&= f(xu), y=h()
A storage function is a C! function V : R* — R such that
» V(0)=0 and V(x) >0, Vx#0
> V(x) <uTy, Vxu
Remark:

» V(T) represents the stored energy in the system

T
- VT) < / yu®dt+ V()
————’ 0 N—_———

stored energy at ¢t = T' stored energy at ¢ = 0

absorbed energy

vT >0

Passivity Theorem is a “Small Phase Theorem”

Gain Adaptation—Closed-Loop System

u y

6 | G(s) j |

P Y
4 @*@* s
L oty || 6 2!

Simulation of Gain Adaptation

1
LetG(S)=m+e,7=l,u:sint,G(O):Oandy*:l

2

Y, Ym

Storage Function and Passivity

Lemma: If there exists a storage function V for a system
= f(x,u), y=h(x)

with x(0) = 0, then the system is passive.
Proof: Forall T > 0,

T
(v uyr = /0 Y(Ou(®)dt > V(x(T)) = V(x(0) = V(x(T)) > 0



Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function

Lyapunov idea: “Energy is decreasing”
V<o
Passivity idea: “Increase in stored energy < Added energy”

VSuTy

Next Lecture

Example KYP Lemma

Consider an asymptotically stable linear system
x=Ax+ Bu, y=Cx

Assume there exists positive definite symmetric matrices P, @
such that
ATP+PA=-Q, and BTP=C

Consider V = 0.527 Px. Then

V =0.5(&TPx 4+ xTPx) = 0557 (ATP + PA)x + u" BT Px

2
=—-05:TQx +uTy<uly, x#0 (@

and hence the system is strictly passive. This fact is part of the
Kalman-Yakubovich-Popov lemma.

» Describing functions (analysis of oscillations)




