Lecture 5 — Input—output stability

or

“How to make a circle out of the point —1 + 0i, and different
ways to stay away from it ...
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Course Outline

Lecture 1-3  Modelling and basic phenomena
(linearization, phase plane, limit cycles)

Lecture 2-6  Analysis methods
(Lyapunov, circle criterion, describing functions)

Lecture 7-8 Common nonlinearities
(Saturation, friction, backlash, quantization)

Lecture 9-13 Design methods
(Lyapunov methods, Backstepping, Optimal control)

Lecture 14 Summary
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Today’s Goal

To understand

@ signal norms
@ system gain
@ bounded input bounded output (BIBO) stability

To be able to analyze stability using

@ the Small Gain Theorem,
@ the Circle Criterion,
@ Passivity

Material

@ [Glad & Ljung]: Ch 1.5-1.6, 12.3
[Khalil]: Ch 5-7.1; [Slotine & Li]: Ch.4.7-4.8

@ lecture slides
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For what G(s) and f(-) is the closed-loop system stable?

@ Lur'e and Postnikov’s problem (1944)

@ Aizerman’s conjecture (1949) (False!)

@ Kalman’s conjecture (1957) (False!)

@ Solution by Popov (1960) (Led to the Circle Criterion)
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Idea: Generalize static gain to nonlinear dynamical systems

The gain y of S should tell what is the largest amplification from
utoy

Here S can be a constant, a matrix, a linear time-invariant
system, etc

Question: How should we measure the size of u and y?
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Norms

A norm || - || measures size.

A norm is a function from a space Q to R*, such that for all
x,y € Q

@ |lx[[>0 and |x[|=0 ¢ x=0

O |lx 4yl < [l + Iy

9 |lax| = || ||x||, foralla € R

Examples
Euclidean norm: ||x|| = \/m
Max norm: [jx|| = max{|xi], ..., [xn[}
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Signal Norms

A signal x(¢) is a function from R* to R.
A signal norm is a way to measure the size of x(¢).

Examples

2-norm (energy norm): ||x|lz =/ [o~ [x(2)|?dt

sup-norm: |jx[|eo = supie g+ [2(2)]

The space of signals with ||x||s < oo is denoted Ly.
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Parseval’s Theorem

Theorem If x,y € Ly have the Fourier transforms

X (io) = /0 T eotydt,  Y(io) = /0 " oty ()t

then

V() (2)dt / Y*(i0) X (io)do
In particular,
) 2 _1/00 N2
ol = [ le@)Pae= 52 [ 1X (0)Pdo.

||lx|l2 < oo corresponds to bounded energy.
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A system S is a map between two signal spaces: y = S(u).

u Yy

— S -

p lle _ o IS@)Il2

The gain of Sis definedas y(S) =
wety lulle ~ ety Tl

Example The gain of a static relation y(t) = cu(¢) is

plloullz _ o 1edliefe

y(a) = = |e]

wet, el uet, Nl
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Example—Gain of a Stable Linear System

N\ G ()]

7(G) = sup 1942 _ 5oy |G
uc Ly ”u”2 we (0,00)

Proof: Assume |G(iw)| < K for w € (0,00) and |G(iw.)| = K
for some w.. Parseval’s theorem gives

1 o

A _F X . 2
Il = 5 [ [¥(o)do
1 [ . .
=5 | 1G@)PIUGo)Pdo < K|ul}

Equality by choosing u(¢) = sin @..t.
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2 minute exercise: Show that y(S1S2) < 7(S1)7(S2).

—] S, S;
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Example—Gain of a Static Nonlinearity

|f(x)] < Klx|,  f(x) = Kx*

Iyll2 = / £2(u(t))dt < / K22 (1)dt = K|ul3
0 0
u(t) = x*, t € (0,00) gives equality =

Y2
v(f) = SUPye 1, ||||u||2 =K
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BIBO Stability

u H Y2
—| s 7(5) = sup {12
u€e Ly ||u||2
Definition

S is bounded-input bounded-output (BIBO) stable if y(S) < co.

Example: If x = Ax is asymptotically stable then
G(s) = C(sI — A)~'B + D is BIBO stable.
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The Small Gain Theorem

r €1
—O— S

€2 ra
So <—(:)‘—

Theorem
Assume S; and S, are BIBO stable. If

7(S1)r(S2) <1

then the closed-loop map from (r1,r2) to (e1, e2) is BIBO stable.
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“Proof” of the Small Gain Theorem

Existence of solution (e, e2) for every (r1,r3) has to be verified
separately. Then

lexllz < [Ir1ll2 + ¥ (Se)lllr2llz + 7 (S1)llell2]
gives
Ir1ll2 + ¥ (S2)lIr2ll2
1—-y(S2)7(S1)

Y(S2)7(S1) <1, [[r1]l2 < o0, [[r2]l2 < oo give [|e1]|z < oco.
Similarly we get

lle1ll2 <

lIrallz + 7 (S1)llr1lle
1—7(S1)7(S2)

lleall2 <

S0 also ey is bounded.
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Linear System with Static Nonlinear Feedback (1)

Ky
ro_ G(s) y ()
- y
()
2
G(s):m and nggly)gK

y(G)=2andy(f) < K.

The small gain theorem gives that K € [0,1/2) implies BIBO
stability.
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The Nyquist Theorem

N ar - -

Theorem

The closed loop system is stable iff the number of
counter-clockwise encirclements of —1 by G(Q) (note: @
increasing) equals the number of open loop unstable poles.
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The Small Gain Theorem can be Conservative

Let f(y) = Ky for the previous system.

The Nyquist Theorem proves stability when K € [0, c0).
The Small Gain Theorem proves stability when K € [0,1/2).
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The Circle Criterion

Case 1: 0<k1§k2<00
kay f(y)

r"@f Meoie
o =i
G(iw)

Theorem Consider a feedback loop with y = Gu and
u = —f(y) +r. Assume G(s) is stable and that

Sl

m

O<k1§f§}y)Sk2.

If the Nyquist curve of G(s) does not intersect or encircle the
circle defined by the points —1/k; and —1/kg, then the
closed-loop system is BIBO stable from r to y.
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G: stable system

@ 0 < k1 < kg: Stay outside circle
@ 0 = k1 < ky: Stay to the right of the line Re s = —1/ky
@ k1 < 0 < kg: Stay inside the circle

Other cases: Multiply f and G with —1.

G: Unstable system
To be able to guarantee stability, £, and &, must have same
sign (otherwise unstable for £ = 0)

@ 0 < k1 < ko: Encircle the circle p times counter-clockwise
(if @ increasing)

@ k1 < kg < 0: Encircle the circle p times counter-clockwise
(if  increasing)
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Linear System with Static Nonlinear Feedback (2)

1

y -
T K

o5 G(iw)

The “circle” is defined by —1/k; = —occ and —1/ky = —1/K.
min Re G(iw) = —1/4

so the Circle Criterion gives that if K € [0,4) the system is
BIBO stable.
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Proof of the Circle Criterion

Let k = (k1 + k2)/2 and f(y) = f(y) — ky. Then

f(») che—Fk1 _
y |~ 2

?1 =r —krz

FRTNO5 — Lecture 5 Automatic Control LTH, Lund University



Proof of the Circle Criterion (cont'd)

L-O—G(s) -
1. &

- O—
1
G(iw)
SGT gives stability for |G (iw)|R < 1 with G = g
g y i 1+ kG’
R < — 1 =‘ 1 +k‘
|G(iw)| |G(io)

Transform this expression through z — 1/z.
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Lyapunov revisited

Original idea: “Energy is decreasing”

x = f(x), x(0) = xo
V(x(T)) = V(x(0)) < 0
(+some other conditions on V)

New idea: “Increase in stored energy < added energy”

x = f(x,u), x(0) = xo
y = h(x)

T
V(x(T)) - V(2(0)) < /0 oyu) dt (@)
external power
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Will assume the external power has the form ¢(y,u) = yTu.
Only interested in BIBO behavior. Note that

3V > 0 with V(x(0)) = 0 and (1)
<~

T
/ yludt> 0
0

Motivated by this we make the following definition
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Passive System

Definition The system S is passive from u to y if

T
/yTudt > 0, foralluandall T >0
0

and strictly passive from u to y if there 3¢ > 0 such that

T
/ Yudt > e(yf2+|ul2), foralluandall T >0
0
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A Useful Notation

Define the scalar product

T
Gy = [ S (Oute)at
Cauchy-Schwarz inequality:

uyr < |ylrlulr

where |y|r = /{3, 5)7. Note that |y|e = [|y]]2-
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2 minute exercise:

St
ﬂ Yy u y

Sy 1

| <
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Feedback of Passive Systems is Passive

So ‘—EDH

If S; and S, are passive, then the closed-loop system from
(r1,r2) to (y1,¥2) is also passive.

Proof: (,r)7 = (1, 71)7 + (Y2, r2) T
= (y1,71 = y2)7 + (Y2, T2 + Y1)T
= (y1,e1)r + (y2,e2)7 = 0
Hence, (y,r)7 > 0if (y1,e1)7 > 0 and (ya,e3)7 >0
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Passivity of Linear Systems

Theorem An asymptotically stable linear system G(s) is
passive if and only if

Re G(iw) > 0, Vo >0
It is strictly passive if and only if there exists ¢ > 0 such that
ReG(iw) > ¢(1 +|G(iw)[?), Vo >0

Proof: See Slotine and Li p. 139 for the first part.

Example o

G(s) = S+; is passive and |
strictly passive, iR
G(s) = % is passive but not

0 02 04 06 08 1

strictly passive.
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A Strictly Passive System Has Finite Gain

u y

— S -

If S is strictly passive, then y(S) < oco.

Proof: Note that ||yl = limp_, |y|7-
2 2
(ylr + lulr) < wyr < [ylr - fulr < (Iyllz2 - (lull

Hence, e|ly|% < ||lyllz - [|l|l2, so letting T' — co gives

1
Iyl < el
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The Passivity Theorem

ri €1 Y1

€2 ra

Y2 s, :

Theorem If Sy is strictly passive and Sy is passive, then the
closed-loop system is BIBO stable from r to y.
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Proof of the Passivity Theorem

S strictly passive and Sy passive give

e(ly1lF + le1z) < (1, e1)r + (2, e2)r = (y, 7)1

Therefore

1
ly1l% + (r1 — y2,71 — yo)r < ;(y, rr

or
1
Iy11% + |y2l3 — 2(y2,r2)r + 1|3 < ;(y, rr

Finally

1 1
% < 2(y2,ra)7 + ;(y, ryr < <2 + €> lyl7|r|r

Letting 7" — oo gives [|y|l2 < CJ|r||2 and the result follows
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Passivity Theorem is a “Small Phase Theorem”

HGD_—’ S1 T
Y2 Ss €2 : ra K
P1 P2
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Example—Gain Adaptation

Applications in channel estimation in telecommunication, noise
cancelling etc.

Process

o |- aes) L
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Gain Adaptation—Closed-Loop System

/ ymT
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Gain Adaptation is BIBO Stable

S is passive (Exercise 4.12), so the closed-loop system is BIBO
stable if G(s) is strictly passive.
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Simulation of Gain Adaptation

LetG(s)=s+11+e,y=1,u=sint, 6(0) =0 andy* = 1

Yy Ym
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Storage Function

Consider the nonlinear control system
x = f(x,u), y=h(x)
A storage function is a C! function V : R® — R such that

@ V(0)=0 and V(x) >0, Vx#0
o V(x)<uTy, Vx,u

Remark:
@ V(T) represents the stored energy in the system

T
o VT < / yOudi+ V()
——r 0 ——

stored energyatt =T " stored energy att =0
absorbed energy
vT >0

FRTNO5 — Lecture 5 Automatic Control LTH, Lund University



Storage Function and Passivity

Lemma: If there exists a storage function V for a system

X = f(x7u)’ Y= h(x)

with x(0) = 0, then the system is passive.
Proof: Forall T > 0,

T
)y = /0 Y(Ou(t)dt > V(x(T)) — V(x(0) = V(x(T)) > 0
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Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function

Lyapunov idea: “Energy is decreasing”
V<o
Passivity idea: “Increase in stored energy < Added energy”

VSuTy
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Example KYP Lemma

Consider an asymptotically stable linear system
x=Ax+ Bu, y=Cx

Assume there exists positive definite symmetric matrices P, @
such that
ATP 4+ PA=—-@, and BTP=C

Consider V = 0.5xT Px. Then

V = 0.5(x7 Px 4+ xTPx) = 0.5xT(ATP + PA)x + u” BT Px

2
=—05xTQx+uly<uly, x#0 @)

and hence the system is strictly passive. This fact is part of the
Kalman-Yakubovich-Popov lemma.
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Next Lecture

@ Describing functions (analysis of oscillations)
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