Lecture 4 — Lyapunov Stability

Material

@ Glad & Ljung Ch. 12.2

@ Khalil Ch. 4.1-4.3

@ Slotine and Li: Chapter 3 (not 3.5.2-3.5.3)
@ Lecture notes
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Today’s Goal

To be able to

@ prove local and global stability of an equilibrium point using
Lyapunov’s method

@ show stability of a set (e.g., an equilibrium, or a limit cycle)
using La Salle’s invariant set theorem.
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Alexandr Mihailovich Lyapunov (1857-1918)

Master thesis “On the stability of ellipsoidal forms of equilibrium
of rotating fluids,” St. Petersburg University, 1884.

Doctoral thesis “The general problem of the stability of motion,”
1892.
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Lyapunov formalized the idea:

If the total energy is dissipated, then the system must be stable.

Main benefit: By looking at how an energy-like function V (a so
called Lyapunov function) changes over time , we might
conclude that a system is stable or asymptotically stable
without solving the nonlinear differential equation.
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Lyapunov formalized the idea:

If the total energy is dissipated, then the system must be stable.

Main benefit: By looking at how an energy-like function V (a so
called Lyapunov function) changes over time , we might
conclude that a system is stable or asymptotically stable
without solving the nonlinear differential equation.

Main question: How to find a Lyapunov function?
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Start with a Lyapunov candidate V to measure e.g.,

@ "size"! of state and/or output error,

@ "size" of deviation from true parameters,

@ energy difference from desired equilibrium,
@ weighted combination of above

)

Example of common choice in adaptive control
1 » ~
V= 2 <e2 + 7aa2 + 7bb2>

(here weighted sum of output error and parameter errors)

1Often a magnitude measure or (squared) norm like |e[Z, ...
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Analysis: Check if V is decreasing with time

. . dv
@ Continuous time: — <0
@ Discrete time: V(k+1)—V(k) <0

Synthesis: Choose e.g. control law and/or parameter update
law to satisfy V < 0

d" P8 Y A7
== 5 p b -
; = ee + Y,aa + }’bb =

= X(—aX — GF + bu) + Yadd + 750b = ...
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Analysis: Check if V is decreasing with time

. . dv
@ Continuous time: — <0
@ Discrete time: V(k+1)—V(k) <0

Synthesis: Choose e.g. control law and/or parameter update
law to satisfy V <0

dV ~A 777,
W = eé+ y,aa + }/bbb =

= X(—aX — GF + bu) + Yadd + 750b = ...

If o is constant and @ = a — 4 then @ = —a.

A

Choose update law % in a "good way" to influence %
(more on this later...)
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A Motivating Example

1 m mi = — bx|x| —kox — k1x
() () damping spring
b,ko,k1 >0
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A Motivating Example

v pelel _k 3
1 m méi bx|x| — kox — kix
() () damping spring
. b, ko, k1 > 0

Total energy = kinetic + pot. energy: V = ’"T”? + f(j‘ Fipringds =
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A Motivating Example

m i = — bilil —FBax — 3
7 méi x| %| 0x — kqx
() () damping spring
X b,ko, k1 >0

Total energy = kinetic + pot. energy: V = ’"T”? + f(j‘ Fipringds =

V(x,%) = mi?/2 + kox?/2 4+ k1x*/4 >0,  V(0,0) =0

d
aV(x,x) = mix + koxx + k1x3% = {plugin system dynamics 2}

=-blz> <0, forx#0

2Also referred to evaluate “along system trajectories”.
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A Motivating Example

m i = — bilil —FBax — 3
7 méi x| %| 0x — kqx
() () damping spring
X b,ko, k1 >0

Total energy = kinetic + pot. energy: V = ’"T”? + f(j‘ Fipringds =

V(x,%) = mi?/2 + kox?/2 4+ k1x*/4 >0,  V(0,0) =0

d
aV(x,x) = mix + koxx + k1x3% = {plugin system dynamics 2}

=-blz> <0, forx#0

What does this mean?

2Also referred to evaluate “along system trajectories”.
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Stability Definitions

An equilibrium point x = 0 of x = f(x) is

@ locally stable , if for every R > 0 there exists r > 0, such
that
lx()|<r = |x@#)||<R, t>0

@ locally asymptotically stable , if locally stable and
|lx(0)]| <r = tlim x(t) =0

@ globally asymptotically stable , if asymptotically stable for
all x(0) € R".
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Lyapunov Theorem for Local Stability

Theorem Let x = f(x), f(0) = 0 where x = 0 is in the interior
of Q C R”. Assume that V : Q — Ris a C! function. If

(1) V(0)=0
(2) V(x) >0,forallx € Q,x #0
(3) V(x) < 0 along all trajectories of the system in Q

= x = 0 is locally stable.
Furthermore, if also
(4) V(x) <Oforallx e Q,x #0

= x = 0 is locally asymptotically stable.
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Lyapunov Functions  (~ Energy Functions)

A function V that fulfills (1)—(3) is called a Lyapunov function.

Condition (3) means that V is non-increasing along all
trajectories in Q.

ov . ov
V(x) = o 87ﬂ(x) <0
ov A%
where e [871’872’ }

X1

level sets where V = const.
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Conservation and Dissipation

Conservation of energy : V(x) = %f(x) =0, i.e., the vector
field f(x) is everywhere orthogonal to the normal %—‘; to the
level surface V(x) = c.

Example: Total energy of a lossless mechanical system or total
fluid in a closed system.
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Conservation and Dissipation

Conservation of energy : V(x) = %f(x) =0, i.e., the vector
field f(x) is everywhere orthogonal to the normal %—‘; to the
level surface V(x) = c.

Example: Total energy of a lossless mechanical system or total
fluid in a closed system.

Dissipation of energy: V(x) = %—Zf(x) <0, i.e., the vector
field f(x) and the normal %‘; to the level surface {z: V(2) = ¢}
make an obtuse angle (Sw. “trubbig vinkel”).

Example: Total energy of a mechanical system with damping or
total fluid in a system that leaks.
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Geometric interpretation

. 4
gradient o

V (x)=constant /%)

Vector field points into sublevel sets

Trajectories can only go to lower values of V (x)
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For any trajectory x(t)

t
V(x(t)) = V(x(0)) +/ V (x(7))dz < V(x(0))
0
which means that the whole trajectory lies in the set

{z|V(2) < V(x(0))}

For stability it is thus important that the sublevel sets
{2|V(2) < ¢} bounded Ve > 0 <= V(x) — o as ||x|| — oo.
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Pendulum
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Example—Pendulum

(1) v(0)=0
(2) V(x) > 0for —27 < x1 < 27 and (x1,x2) # 0
()

V(x) = %1 sinx1gf + Pxgip =0,  forallx

Hence, x = 0 is locally stable.

Note that x = 0 is not asymptotically stable, because V (x) = 0
and not < 0 for all x # 0.
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Positive Definite Matrices

Definition: Symmetric matrix M = M7 is
@ positive definite (M >0) if x"Mx >0, Vx#0

@ positive semidefinite (M >0) if x"Mx >0, Vx

Lemma:

OM=MT'>0 <= A(M)>0,Vi
OoM=M">0 <= MN(M)>0,Vi

M=M">0 V(x) :=xTMx
U
V(0)=0, V(x)>0,Vx#0

V (x) candidate Lyapunov function
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More matrix results

@ for symmetric matrix M = MT
ﬂmin(M)”x”2 < " Mx < lmaX(M)”x”27 Vx

Proof idea; factorize M = UAUT, unitary U (i.e.,
[|Ux|| = ||x|| Vx), A = diag(41,...,4n)

o for any matrix M

”Mx” < 2~max(ZMTM)”3C” , Vx
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Example- Lyapunov function for linear system

e @

Eigenvalues of A : {—1, —3} = (global) asymptotic stability.

Find a quadratic Lyapunov function for the system (1):

=R YR
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Example- Lyapunov function for linear system

e @

Eigenvalues of A : {—1, —3} = (global) asymptotic stability.

Find a quadratic Lyapunov function for the system (1):

=R YR

Take any @ = QT > 0, say @ = Ir,s. Solve ATP + PA = —Q.
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Example contd

ATP+PA=—1
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Example contd

ATP+PA=—1

2t 3 I 3

4 3| |p12 D22 P12 P22 B
[ —2p11 —4p12 + 4p11] & [—1 0 ]
—4p12 +4p11 8p12 — 6p22 0 -1

Automatic Control LTH, Lund University
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Example contd

ATP+PA=—1

4 3| |p12 D22 P12 P22
(2)

—4pia+4pn| _|[-1 O
10 -1

2t 3 I 3

[ —2p11
—4p12 +4p11 8p12 — 6p22

Solving for p11, p12 and peg gives
2p11 =—1
—4p12 +4p11 =0
8p12 — 6p22 = —1
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Example contd

ATP+PA=—1

[—1 0] [pn plz] & [pn plz] [—1 4] _
4 3| |p12 D22 P12 D22 0 -3
[ —2p11 —4p12 + 4p11] & [—1 0 ]
—4p12 +4p11 8p12 — 6p22 0 -1

(@)

Solving for p11, p12 and peg gives
2p11 =—1
—4p12 +4p11 =0
8p12 — 6p22 = —1

P R ER

Automatic Control LTH, Lund University

FRTNO5 — Lecture 4




x1'=-x1+4x2
x2'=-3x2

Phase plot showing that
V=iei 4= m |

05 O
0 05| |xe
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} [xl] does NOT work.
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Lyapunov Stability for Linear Systems

Linear system: x = Ax
Lyapunov equation: Let @ = @ > 0. Solve
PA+ATP=-@Q
with respect to the symmetric matrix P.
Lyapunov function: V(x) = xT Px, =
V(x) = xTPi + 5T Px = xT(PA + ATP)x = —xTQx < 0
Asymptotic Stability:  If P = PT > 0, then the Lyapunov

Stability Theorem implies (local=global) asymptotic stability,
hence the eigenvalues of A must satisfy Re A1,(A) < 0, V&
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Converse Theorem for Linear Systems

If Re 1,(A) < 0 VE, then for every @ = QT > 0 there exists
P=PT >0suchthat PA + ATP = —@Q

o
Proof: Choose P = / eA'tQeAldt. Then
0

ATpP+pA

t
lim (ATeATTQeAT + eATTQAeAT) dr
0

t—o00

= lim {eATTQeAT} Z

t—00

= -Q
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Interpretation

Assume x = Ax, x(0) = z. Then

/OO T (£)Qx(t)dt = 2" (/OO eATthAtdt> z=2"Pz
0

0

Thus V(z) = 2T Pz is the cost-to-go from z (with no input) and
integral quadratic cost function with weighting matrix .
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Lyapunov’s Linearization Method

Recall from Lecture 2:

Theorem Consider
% = f(x)

Assume that f(0) = 0. Linearization

s=Ax+g(x), gl =o(lxll) asx 0.

(1) ReAx(A) <0,Vk = x =0 locally asympt. stable
(2) 3k : ReAr(A) >0 = x =0 unstable
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Proof of (1) in Lyapunov’s Linearization Method

Put V(x) := x” Px. Then, V(0) =0, V(x) > 0 Vx # 0, and

V(x) =xTPf(x) + f¥(x)Px
= 2T P[Ax + g(x)] + [xTAT + o7 (x)]Px
= xT(PA + ATP)x + 25T Pg(x) = —xT Qx + 2xT Pg(x)

2 Qx 2 Amin(@)llx|”
and for all y > 0 there exists » > 0 such that
lg@)Il <7ll«ll,  Vixll <7

Thus, choosing y sufficiently small gives

V(x) < _(lmin(Q) S 27lmax(P))||x”2 <0
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Lyapunov Theorem for Global Asymptotic Stability

Theorem Let x = f(x) and f(0) = 0.

If there exists a C! function V : R* — R such that
(1) v(0)=0

(2) V(x) >0, forallx #0

(3) V(x)<Oforallx #0

(4) V(x) > o0 as ||x]|| = o0

then x = 0 is globally asymptotically stable.

FRTNO5 — Lecture 4 Automatic Control LTH, Lund University



Radial Unboundedness is Necessary

If the condition V (x) — oo as ||x|| — oo is not fulfilled, then
global stability cannot be guaranteed.

Example Assume V (x) = x2/(1 + x2) + x2 is a Lyapunov
function for a system. Can have ||x|| — oo even if V(x) < 0.

Contour plot V(x) = C:
% il
s  Vheamr iy

= & A

] el L% [0 )
7 7 S (1+x2)2
—2
] £y = (%1 + x2)

(14 x2)2

X2

X2
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Somewhat Stronger Assumptions

Theorem: Letx = f(x) and £(0) = 0. If there exists a C!
function V : R® — R such that

(1) v(0
(2) V(x
(3) V(x
(4) V(x

=0
>0forallx#0
—aV (x) for all x

— — — —

<
— 00 as |lx]| = oo

then x = 0 is globally exponentially stable.
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Proof Idea

Assume x(t) # 0 ( otherwise we have x(7) = 0 for all 7 > ¢).

Then l
V(%)
V(x)

Integrating from O to ¢ gives

<—a

log V(x(t)) —log V(x(0)) < —at = V(x(t)) < e *V(x(0))
Hence, V(x(t)) — 0, t — oo.

Using the properties of V it follows that x(¢) — 0, t — co.
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Invariant Sets

Definition: A set M is called invariant if for the system
x = f(x),

x(0) € M implies that x(¢) € M for all ¢ > 0.
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LaSalle’s Invariant Set Theorem

Theorem Let Q C R” compact invariant set for x = f(x).

Let V : Q — R be a C! function such that V(x) <0, Vx € Q,
E:={x€ Q: V(x) = 0}, M :=largest invariant subset of E
= Vx(0) € Q, x(t) approaches M as ¢t — +oco

| el

Note that V must not be a positive definite function in this case.
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Special Case: Global Stability of Equilibrium

Theorem: Letx = f(x) and £(0) = 0. If there exists a C!
function V : R® — R such that

(1) V(0)=0,V(x) >0forallx #0

(2) V(x) < 0forall x

(8) V(x) » o0 as ||x|| —»

(4) The only solution of & = f(x), V(x) = 0is x(¢) = 0 V¢

= x = 0 is globally asymptotically stable.
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A Motivating Example (cont'd)

mi = —bx|x| — kox — k1x3
V(x) = (2ma® + 2kox® + k1x*)/4 >0,  V(0,0)=0
V(x) = —b|x|’

Assume that there is a trajectory with %(¢) = 0, x(¢) # 0. Then

Do) = 0 (py P13
ax(t)— mx(t) X (t) #0,

which means that x(¢) can not stay constant.

Hence, V(x) =0 <= «x(t) =0, and LaSalle’s theorem gives
global asymptotic stability.
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Example—Stable Limit Cycle

Show that M = {x : ||x|| = 1} is a asymptotically stable limit
cycle for (almost globally, except for starting at x=0):

X1 = X1 — X2 —xl(x% +x§)

Xo = X1 + X2 — xg(xf +x%)
Let V(x) = (22 + 22 — 1)%.

av d

=—2x2+22-1)2(x2+x2) <0 forxe Q

Q ={0 < ||x|| £ R} is invariant for R = 1.
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Example—Stable Limit Cycle

E={xe Q: V(x):O}:{x: ||| = 1}
M = E is an invariant set, because
d
EV = —2(x2+x2—1)(x2+x2)=0 forxe M

We have shown that M is a asymtotically stable limit cycle
(globally stable in R — {0})

Phase Plane
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A Motivating Example (revisited)

mi = —bx|x| — kox — kyx3
V(x,%) = (2mx® + 2kox® + k1x*)/4 >0,  V(0,0)=0
V(x,x) = —b|x|? gives E = {(x,%) : x = 0}.
Assume there exists (&,x) € M such that (o) # 0. Then
mi(to) = —ko(to) — k15> (to) # 0

so ¥(tp+) # 0 so the trajectory will immediately leave M. A
contradiction to that M is invariant.

Hence, M = {(0,0)} so the origin is asymptotically stable.
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Adaptive Noise Cancellation by Lyapunov Design

u b X x
s+a Z.
A
2 X
‘a

X +ax =bu
X+ ax = bu
Introducex =x—x, a=a—a, b=>b—-0>.

Want to design adaptation law so that x — 0
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Let us try the Lyapunov function

V= %(562 + Ya@2 + 75b%)
V = %% + Y44 + 75bb =
— %(—aF — G% + bu) + Yo + 7bb = —aF?
where the last equality follows if we choose
) g - 1
a=—a=%xx b=—b=—%xu

Invariant set: x = 0.
This proves that x — 0.

(The parameters a and b do not necessarily converge: u = 0.)

’ Demonstration if time permits

FRTNO5 — Lecture 4 Automatic Control LTH, Lund University



Results
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Estimation of parameters starts at t=10 s.
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Results

Estimation of parameters starts at t=10 s.

FRTNO5 — Lecture 4 matic Control LTH, Lund University



Next Lecture

@ Stability analysis using input-output (frequency) methods
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