@ The Maximum Principle Revisited
@ Examples

@ Numerical methods/Optimica

@ Examples, Lab 3

Material

@ Lecture slides,
including material by J. Akesson, Automatic Control LTH

@ Glad & Ljung, part of Chapter 18
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Outline

To be able to

@ solve simple problems using the maximum principle
@ formulate advance problems for numerical solution
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Problem Formulation (1)

e The Maximum Principle Revisited
o Examples

o Numerical methods/Optimica

o Example — Double integrator

o Example — Alfa Laval Plate Reactor
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The Maximum Principle (18.2)

Standard form (1):

Trajectory cost Final cost

f —— ——
R /O T(),u() dt +9(,)
&(t) = £(x(2),u(?))
ut)e U, 0<t<ty,
x(0) = x9

ty given
x(t) € R™, u(t) € R™
U control constraints

Here we have a fixed end-time ¢ ;. This will be relaxed later on.
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RENMES

Introduce the Hamiltonian
H(x,u,A) = L(x,u) + AT () f (x,u).

Suppose optimization problem (1) has a solution {u*(¢), x*(¢)}.
Then the optimal solution must satisfy

min H (x"(t),u, A(t)) = H(x*(¢),u"(¢), A(2)),

OStStf,
ueU

where A(¢) solves the adjoint equation

dA(t)/dt = —H (" (£),u”(£), A(t)), with A(tf) = ¢x (+"(t7))
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Goddard’s Rocket Problem revisited

(v(0),(0),m(0)) = (0,0,mo), g, >0
u motor force, D = D(v, k) air resistance

Constraints: 0 < u < Upmq, and m(ty) = my (empty)

Optimization criterion: max, h(tf)
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p. 7

The Maximum Principle gives necessary conditions

A pair (u*(-),x*(-)) is called extremal the conditions of the
Maximum Principle are satisfied. Many extremals can exist.

The maximum principle gives all possible candidates.

However, there might not exist a minimum!
Example

Minimize x(1) when %(¢) = u(¢), x(0) = 0 and u(¢) is free

Why doesn'’t there exist a minimum?
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Problem Formulation (2)

min [ L(x(t)u(®) dt + 0(x(t))

w:[0ts]-U Jo
x(t) = f(x(t),u(t), x(0)=x0
w(x(ty) =0

Note the differences compared to standard form:

@ End constraints y(x(t£)) =0
@ ty free variable (i.e., not specified a priori)
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The Maximum Principle—-General Case (18.4) Normal/abnor mal cases

Introduce the Hamiltonian
H(x,u,A,n0) = noL(x,u) + AT (¢) f(x,u)

Suppose optimization problem (2) has a solution u*(¢), x*(¢).
Then there is a vector function A(¢), a number ny > 0, and a
vector u € R’ so that [ng #T] # 0 and

min H (x*(2),u, A(t),no) = H(x*(t),u”(¢), A(¢),n0),

0<t<t
uelU SU S

where

A(t) = —H{ (x (¢), u" (2), A(t), no)
Altr) = nod (x* (7)) + W3 (2" (t7) )1

If the end time ¢ is free, then H (x*(tf),u*(tf), A(tf),no) = 0.
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Hamilton function is constant

Can scale ng, 1, A(¢) by the same constant
Can reduce to two cases
@ ng =1 (normal)
@ ng = 0 (abnormal, since L and ¢ don’t matter)

As we saw before (18.2): fixed time £, and no end constraints
= normal case
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Feedback or feed-forward?

H is constant along extremals (x*,u*)
Proof:
d

EH:Hxx+Hli+Huu:fo—fTHxT+O:O
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Reference generation using optimal control

Note that the optimization problem makes no distinction
between open loop control »*(¢) and closed loop control
u*(¢,x). Feedback is needed to take care of disturbances and
model errors.

Idea: Use the optimal open loop solution u*(¢),x*(¢) as
reference values to a linear regulator that keeps the system
close to the wanted trajectory

Efficient for large setpoint changes.

*

Y x—x

Planned trajectory x*
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Second Variations

By expanding the criterion, ¢/, to second order one can see that

1 17 (6x) " (He H 5x
27 _ — T © xx xu
0d = 25x ¢xx6x+2/to [Su] [Hux HW] [Ju] dt
6x = f0x + fuou

where J = J* + §2J + ... is a Taylor expansion of the criterion
and 6, = x—x*and 6, = u —u*.

Treat this as a new optimization problem. Linear time-varying
system and quadratic criterion. Gives an optimal controller of
the form

u—u*=L(t)(x —x%)
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Example:
dr _
dt —
minimize J = / <x2 + uz) dt
0

u, x(0)=1

Jmin = 1 is achieved for
open loop (2)

or
closed loop 2)

(1) = stable system
(2) = asympt. stable system

Sensitivity for noise and disturbances differ!!
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Recall Linear Quadratic Control

+ T
minimize xT(tf)QNx(tf)+/0f[z] [gi g;z] [z]

where

x=Ax+ Bu, y=Cx

Optimal solution if ¢ = oo, @ = 0, all matrices constant, and
x measurable:
u=—Lx

where L = Q3 (Q12 + BT S) and S is the positive definite
solution to

SA+ATS + Q11— (Q12 + SB)Q% (Q12 + BTS) =0
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Opt. Ref. Gen.

G>—> Lin. Cont. 4>®7 Proc.

2

Obs.

Take care of deviations with linear controller
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o Example — Double integrator
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Anders Rantzer Lecture 11, Optimal Control

Solution

tf=1
Minimize / P(¢)dt
0

T=P—-T
OSPSPmax
T0)=0, T(1)=1

when

T temperature
P heat effect
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Solution

Hamiltonian
H =nyP+ AP — AT
Adjoint equation
4 OH
T
=—Hp=——Q" =
A T oT A
= At) = pe!™?
= H=(no+ue )P—AT
————

o(t)
At optimality

s |0, o(t) >0
1) —{ Pras, () <0
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Example — The Milk Race

1 =0= (ng,u) =(0,0) = Not allowed!
U # 0 = Constant P or just one switch!
T(t) approaches one from below, so P # 0 near ¢ = 1. Hence
e _ | 0, 0<t<t
P (t)_{ Prax, t1<t<1
0, 0<t<#

T(t) = { Sl e Paydr = (67D — e==0)) Prgy, t <t <1
Time ¢; is given by T'(1) = (1 — e~ (17)) Py = 1

Has solution 0 < ¢; < 1 if Pmax > g
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Minimal Time Problem

Move milk in minimum time without spilling!
[M. Grundelius — Methods for Control of Liquid Slosh]

[movie]
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Results- milk race

NOTE! Common trick to rewrite criterion into “standard form"!!

tr
minimize {; = minimize / 1dt
Jo
Control constraints
()] < upres

No spilling
[Cx(t)| <h

Optimal controller has been found for the milk race

Minimal time problem for linear system & = Ax + Bu, y = Cx
with control constraints |u;(¢)| < u***. Often bang-bang control
as solution
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Outline

Maximum slosh ¢,,,,, = 0.63
Maximum acceleration = 10 m/s2
Time optimal acceleration profile

Optimal time = 375 ms, industrial = 540ms
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o The Maximum Principle Revisited
o Examples

e Numerical method s/Optimica

o Example — Double integrator

o Example — Alfa Laval Plate Reactor
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Numerical Methods for Dynamic Optimization

@ Many algorithms
@ Applicability highly model-dependent
(ODE, DAE, PDE, hybrid?)
@ Calculus of variations
@ Single/Multiple Shooting
@ Simultaneous methods
@ Simulation-based methods
@ Analogy with different simulation algorithms
(but larger diversity)
@ Heavy programming burden to use numerical algorithms
@ Fortran
e C

@ Engineering need for high-level descriptions
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Optimica and JModelica — A Research Project

@ Modelica is increasingly used in industry

@ Expert knowledge
@ Capital investments

@ Usage so far
@ Simulation (mainly)

@ Other usages emerge
@ Sensitivity analysis

Optimization

Model reduction

System identification

o
]
]
@ Control design
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Outline

Modelica — A Modeling Language

@ Shift focus:

o from encoding
@ to problem formulation

@ Enable dynamic optimization of Modelica models
@ State of the art numerical algorithms

@ Develop a high level description for optimization problems
@ Extension of the Modelica language

@ Develop prototype tools

o JModelica and The Optimica Compiler
@ Code generation
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Optimica—An Example

tr
min / 1dt
u(t) Jo

subject to the dynamic constraint

and
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The Optimica Description

Minimum time optimization problem

optimization DIMinTime (objective=cost(finalTime),
startTime=0,
finalTime(free=true,initialGuess=1))

Real cost;

DoubleIntegrator di(u(free=true,initialGuess=0.0));
equation

der(cost) = 1;
constraint

finalTime>=0.5;

finalTime<=10;

di.x(finalTime)=1;

di.v(finalTime)=0;

di.v<=0.5;

di.u>=-1; di.u<=1;
end DIMinTime;
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e Example — Double integrator

o Example — Alfa Laval Plate Reactor
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A Modelica Model for a Double Integrator

A double integrator model

model DoubleIntegrator
Real x(start=0);
Real v(start=0);
input Real u;
equation
der(x)=v;
der(v)=u;
end DoublelIntegrator;
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Optimal Double Integrator Profil es

tis) sl
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e Example — Alfa Laval Plate Reactor
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The Optimization Problem

Reduce sensitivity of the nominal start-up trajectory by:

- Introducing a constraint on the accumulated concentration of
reactant B
- Introducing high frequency penalties on the control inputs

ty
. 2 2 2 2
min / QACA out + XBCB ot + XB19B1,r + XB2dB2 T
Jo
[){TIT% L aTZTcz dt
= f(x,u)

subject to

T.; <155, i=1.N cp; <600, cps< 1200
0<gp1<0.7, 0<gps <07
-15<Ty<2, -15<7T.<0.7
30 <T; <80, 20<T, <80
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cp,1 [molim?] cg 9 [mol/m?] T [°C] Ty [°Cl
1500 1500
150 150
1000 1000
100 100
500 500
50 50
0 0
0 50 100 0 50 100 O 50 100 O 50 100
gp1 ] gp2 [ Ty el T, rcl
0.6 0.6 80 80
0.4 0.4 60 60
0.2 0.2 40 40
0 20 20
0 . 50 100 . 50 100 0 . 50 100 O . 50 100
Time [s] Time [s] Time [s] Time [s]
Almost as fast, but more robust with lower cg-constraints
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Optimal Start-up of a Plate Reactor

Reactant B l

Reactant A qB1 qBe
Ty

Reactor outlet

®© 0 0 0

Cooling water

@ Achieve safe start-up T, < Thyax
@ Maximize the conversion

!

@ Minimize the start-up time
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The Optimization Problem—Optimica

Robust optimization formulation

optimization PlateReactorOptimization (objective=cost(finalTime),
startTime=0,
finalTime=150)
PlateReactor pr(u_T_cool_setpoint(free=true), u_TfeedA_setpoint(free=true),
u_B1_setpoint(free=true), u_B2_setpoint(free=true));
parameter Real sc_t 70/50 "Scaling factor”;
parameter Real sc_c = 2392/50 "Scaling factor";
Real cost(start=0);
equation
der(cost) = 0.1#pr.cA[30]42#sc_cA2 + 0.025#pr.cB[30]42+sc_cA2 + 1lspr.u_Bl_setpoint_fA2 +
1+pr.u_B2_setpoint_fA2 + lsder(pr.u_T_cool_setpoint)A2+sc_uA2 +
1+der(pr.u_TfeedA_setpoint)A2:sc_ur2;

constraint
pr.Tr/u_sc<=(155+273)*ones(30) ;

pr.cB[1]<=200/sc_c; pr.cB[16]<=400/sc_c;

pr.u_Bl_setpoint>=0; pr.u_Bl_setpoint<=0.7;
pr.u_B2_setpoint>=0; pr.u_B2_setpoint<=0.7;

pr.u_T_cool_setpoint>=(15+273)/sc_u; pr.u_T_cool_setpoint<=(80+273)/sc_u;
pr.u_TfeedA_setpoint>=(30+273)/sc_u; pr.u_TfeedA_setpoint<=(80+273)/sc_u;

der (pr.u_T_cool_setpoint)>=-1.5/sc_u; der(pr.u_T_cool_setpoint)<=0.7/sc_u;
der (pr.u_TfeedA_setpoint)>=-1.5/sc_u; der(pr.u_TfeedA_setpoint)<=2/sc_u;
end PlateReactorOptimization;
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Summary

e The Maximum Principle Revisited

e Examples
e Numerical methods/Optimica
e Example — Double integrator

e Example — Alfa Laval Plate Reactor
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