Lecture 11 — Optimal Control

Goal

- The Maximum Principle Revisited
- Examples
- Numerical methods/Optimica
- Examples, Lab 3

Material

- Lecture slides. including material by J. Åkesson, Automatic Control LTH
- Glad & Ljung, part of Chapter 18

To be able to

- solve simple problems using the maximum principle
- formulate advance problems for numerical solution

Outline

- The Maximum Principle Revisited
- Examples
- o Numerical methods/Optimica
- Example Double integrator
- Example Alfa Laval Plate Reactor

Problem Formulation (1)

Standard form (1):

$$\begin{aligned} & \text{Minimize} \quad \int_0^{t_f} \overline{L(x(t),u(t))} \, \, dt + \overbrace{\phi(x(t_f))}^{\text{Final cost}} \\ & \dot{x}(t) = f(x(t),u(t)) \\ & u(t) \in U, \quad 0 \leq t \leq t_f, \qquad t_f \text{ given} \\ & x(0) = x_0 \end{aligned}$$

 $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$

U control constraints

Here we have a fixed end-time t_f . This will be relaxed later on.

The Maximum Principle (18.2)

Introduce the Hamiltonian

$$H(x, u, \lambda) = L(x, u) + \lambda^{T}(t) f(x, u).$$

Suppose optimization problem (1) has a solution $\{u^*(t), x^*(t)\}.$ Then the optimal solution must satisfy

$$\min_{u \in U} H(x^*(t), u, \lambda(t)) = H(x^*(t), u^*(t), \lambda(t)), \quad 0 \le t \le t_f,$$

where $\lambda(t)$ solves the adjoint equation

$$d\lambda(t)/dt = -H_x^T(x^*(t), u^*(t), \lambda(t)), \text{ with } \lambda(t_f) = \phi_x^T(x^*(t_f))$$

Remarks

The Maximum Principle gives necessary conditions

A pair $(u^*(\cdot), x^*(\cdot))$ is called **extremal** the conditions of the Maximum Principle are satisfied. Many extremals can exist.

The maximum principle gives all possible candidates.

However, there might not exist a minimum!

Example

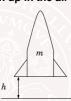
Minimize x(1) when $\dot{x}(t) = u(t)$, x(0) = 0 and u(t) is free

Why doesn't there exist a minimum?

Goddard's Rocket Problem revisited

How to send a rocket as high up in the air as possible?

$$\frac{d}{dt} \begin{pmatrix} v \\ h \\ m \end{pmatrix} = \begin{pmatrix} \frac{u-D}{m} - g \\ -\gamma u \end{pmatrix}$$



 $(v(0), h(0), m(0)) = (0, 0, m_0), g, \gamma > 0$ u motor force, D = D(v,h) air resistance

Constraints: $0 \le u \le u_{max}$ and $m(t_f) = m_1$ (empty)

Optimization criterion: $\max_u h(t_f)$

Problem Formulation (2)

$$\min_{\substack{u:[0,t_f]\to U\\ \psi(x(t_f))=0}} \int_0^{t_f} L(x(t),u(t)) dt + \phi(x(t_f))$$

$$\dot{x}(t) = f(x(t),u(t)), \quad x(0) = x_0$$

$$\psi(x(t_f)) = 0$$

Note the differences compared to standard form:

- End constraints $\psi(x(t_f)) = 0$
- t_f free variable (i.e., not specified a priori)

Anders Rantzer Lecture 11, Optimal Control

Anders Rantzer Lecture 11, Optimal Control

The Maximum Principle-General Case (18.4)

Introduce the Hamiltonian

$$H(x, u, \lambda, n_0) = n_0 L(x, u) + \lambda^T(t) f(x, u)$$

Suppose optimization problem (2) has a solution $u^*(t), x^*(t)$. Then there is a vector function $\lambda(t)$, a number $n_0 \ge 0$, and a vector $\mu \in R^r$ so that $[n_0 \ \mu^T] \neq 0$ and

$$\min_{u \in U} H(x^*(t), u, \lambda(t), n_0) = H(x^*(t), u^*(t), \lambda(t), n_0), \quad 0 \le t \le t_f,$$

where

$$\begin{split} \dot{\lambda}(t) &= -H_x^T(x^*(t), u^*(t), \lambda(t), n_0) \\ \lambda(t_f) &= n_0 \phi_x^T(x^*(t_f)) + \Psi_x^T(x^*(t_f)) \mu \end{split}$$

If the end time t_f is free, then $H(x^*(t_f), u^*(t_f), \lambda(t_f), n_0) = 0$.

• $n_0 = 0$ (abnormal, since L and ϕ don't matter)

As we saw before (18.2): fixed time t_f and no end constraints

Can scale $n_0, \mu, \lambda(t)$ by the same constant

Can reduce to two cases

• $n_0 = 1$ (normal)

⇒ normal case

Hamilton function is constant

H is constant along extremals (x^*, u^*)

Proof:

$$\frac{d}{dt}H = H_x\dot{x} + H_\lambda\dot{\lambda} + H_u\dot{u} = H_xf - f^TH_x^T + 0 = 0$$

Feedback or feed-forward?

Normal/abnormal cases

Example:

$$\frac{dx}{dt} = u, \qquad x(0) = 1$$
 minimize $J = \int_0^\infty \left(x^2 + u^2\right) dt$

 $J_{min}=1$ is achieved for

$$u(t) = -e^{-t} \qquad \text{open loop} \tag{1}$$

or

$$u(t) = -x(t)$$
 closed loop (2)

 $(1) \Longrightarrow$ stable system

(2) ⇒ asympt. stable system

Sensitivity for noise and disturbances differ!!

Recall Linear Quadratic Control

Reference generation using optimal control

Note that the optimization problem makes no distinction between open loop control $u^*(t)$ and closed loop control $u^*(t,x)$. Feedback is needed to take care of disturbances and model errors.

Idea: Use the optimal open loop solution $u^*(t), x^*(t)$ as reference values to a linear regulator that keeps the system close to the wanted trajectory

Efficient for large setpoint changes.

where

 $\dot{x} = Ax + Bu, \quad y = Cx$

minimize $x^T(t_f)Q_Nx(t_f) + \int_0^{t_f} \begin{pmatrix} x \\ u \end{pmatrix}^T \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{12}^T & Q_{22} \end{pmatrix} \begin{pmatrix} x \\ u \end{pmatrix}$

Optimal solution if $t_f = \infty$, $Q_N = 0$, all matrices constant, and x measurable:

$$u = -Lx$$

where $L = Q_{22}^{-1}(Q_{12} + B^TS)$ and S is the positive definite solution to

$$SA + A^{T}S + Q_{11} - (Q_{12} + SB)Q_{22}^{-1}(Q_{12} + B^{T}S) = 0$$

Second Variations

By expanding the criterion, J, to second order one can see that

$$\delta^{2}J = \frac{1}{2}\delta x^{T}\phi_{xx}\delta x + \frac{1}{2}\int_{t_{0}}^{t_{f}} \begin{pmatrix} \delta x \\ \delta u \end{pmatrix}^{T} \begin{pmatrix} H_{xx} & H_{xu} \\ H_{ux} & H_{uu} \end{pmatrix} \begin{pmatrix} \delta x \\ \delta u \end{pmatrix} dt$$
$$\delta \dot{x} = f_{x}\delta x + f_{u}\delta u$$

where $J = J^* + \delta^2 J + \dots$ is a Taylor expansion of the criterion and $\delta_x = x - x^*$ and $\delta_u = u - u^*$.

Treat this as a new optimization problem. Linear time-varying system and quadratic criterion. Gives an optimal controller of the form

$$u - u^* = L(t)(x - x^*)$$

Opt. Ref. Gen â

Take care of deviations with linear controller

Anders Rantzer Lecture 11, Optimal Control

Anders Rantzer Lecture 11, Optimal Control

Outline Example: Optimal heating o The Maximum Principle Revisited Minimize $\int_0^{tf=1} P(t) dt$ **Examples** Numerical methods/Optimica when $\dot{T} = P - T$ Example — Double integrator $0 \le P \le P_{max}$ $T(0) = 0, \quad T(1) = 1$ Example — Alfa Laval Plate Reactor T temperature P heat effect **Solution Solution** Hamiltonian $\mu = 0 \Rightarrow (n_0, \mu) = (0, 0) \Rightarrow \text{Not allowed!}$ $H = n_0 P + \lambda P - \lambda T$ $\mu \neq 0 \Rightarrow$ Constant *P* or just one switch! Adjoint equation T(t) approaches one from below, so $P \neq 0$ near t = 1. Hence $\dot{\lambda}^T = -H_T = -\frac{\partial H}{\partial T} = \lambda$ $\lambda(1) = \mu$ $P^*(t) = \left\{ \begin{array}{ll} 0, & 0 \leq t \leq t_1 \\ P_{\mathsf{max}}, & t_1 < t \leq 1 \end{array} \right.$ $T(t) = \left\{ \begin{array}{l} 0, & 0 \leq t \leq t_1 \\ 0, & 0 \leq t \leq t_1 \\ \int_{t_1}^1 e^{-(t-\tau)} P_{\max} \, d\tau = \left(e^{-(t-1)} - e^{-(t-t_1)} \right) P_{\max}, & t_1 < t \leq 1 \end{array} \right.$ $\Rightarrow \lambda(t) = \mu e^{t-1}$ $\Rightarrow H = \underbrace{(n_0 + \mu e^{t-1})}_{\sigma(t)} P - \lambda T$ Time t_1 is given by $T(1) = \left(1 - e^{-(1-t_1)}\right) P_{\mathsf{max}} = 1$ At optimality Has solution $0 \le t_1 \le 1$ if $P_{\mathsf{max}} \ge \frac{1}{1 - e^{-1}}$ $P^*(t) = \left\{ egin{array}{ll} 0, & \sigma(t) > 0 \\ P_{max}, & \sigma(t) < 0 \end{array} ight.$ **Minimal Time Problem** Example - The Milk Race NOTE! Common trick to rewrite criterion into "standard form"!! minimize $t_f = \text{minimize} \int_0^{t_f} 1 dt$ Control constraints $|u(t)| \leq u_i^{max}$ No spilling $|Cx(t)| \le h$ Optimal controller has been found for the milk race Move milk in minimum time without spilling! Minimal time problem for linear system $\dot{x} = Ax + Bu$, y = Cx[M. Grundelius - Methods for Control of Liquid Slosh] with control constraints $|u_i(t)| \leq u_i^{max}$. Often bang-bang control as solution [movie] **Results- milk race Outline** Maximum slosh $\phi_{max} = 0.63$ Maximum acceleration = 10 m/s² Time optimal acceleration profile The Maximum Principle Revisited Examples **Numerical methods/Optimica** Example — Double integrator Example — Alfa Laval Plate Reactor Optimal time = 375 ms, industrial = 540ms

Modelica — A Modeling Language **Numerical Methods for Dynamic Optimization** Modelica is increasingly used in industry Many algorithms Expert knowledge Applicability highly model-dependent (ODE, DAE, PDE, hybrid?) Capital investments Calculus of variations Single/Multiple Shooting Usage so far Simultaneous methods Simulation (mainly) Simulation-based methods Analogy with different simulation algorithms Other usages emerge (but larger diversity) Sensitivity analysis Heavy programming burden to use numerical algorithms Optimization Model reduction System identification Engineering need for high-level descriptions Control design Optimica and JModelica — A Research Project **Outline** Shift focus: The Maximum Principle Revisited from encoding to problem formulation Examples Enable dynamic optimization of Modelica models State of the art numerical algorithms Numerical methods/Optimica Develop a high level description for optimization problems Example — Double integrator Extension of the Modelica language Develop prototype tools Example — Alfa Laval Plate Reactor JModelica and The Optimica Compiler Code generation A Modelica Model for a Double Integrator **Optimica—An Example** A double integrator model subject to the dynamic constraint model DoubleIntegrator Real x(start=0); $\dot{x}(t) = v(t), \quad x(0) = 0$ Real v(start=0): $\dot{v}(t) = u(t), \quad v(0) = 0$ input Real u; equation der(x)=v;and $x(t_f) = 1$ der(v)=u; end DoubleIntegrator; $v(t_f)=0$ $v(t) \leq 0.5$ $-1 \le u(t) \le 1$ **Optimal Double Integrator Profiles The Optimica Description** Minimum time optimization problem optimization DIMinTime (objective=cost(finalTime), startTime=0. finalTime(free=true,initialGuess=1)) Real cost; DoubleIntegrator di(u(free=true,initialGuess=0.0)); equation der(cost) = 1;constraint finalTime>=0.5; finalTime<=10;</pre> di.x(finalTime)=1; di.v(finalTime)=0; di.v<=0.5; di.u>=-1; di.u<=1; end DIMinTime;

Anders Rantzer Lecture 11, Optimal Control

