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Lecture 10 — Opt imal Cont rol

Introduction

The rocket problem

Optimal control problems

The maximum principle

Material

Lecture slides

References to Glad & Ljung, part of Chapter 18
Note: page references to Swedish edition
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Goal

To be able to

solve simple optimal control problems by hand

design controllers

using the maximum principle
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Opt imal Cont rol Problems

Idea: Formulate the design problem as optimization problem

+ Gives systematic design procedure

+ Can use on nonlinear models

+ Can capture limitations etc as constraints

– Hard to find suitable criterium?!

– Can be hard to find the optimal controller

Solutions will often be of “bang-bang” character if control signal
is bounded, compare lecture 10 on sliding mode controllers.
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The beginni ng

John Bernoulli: The bracistochrone problem 1696

Let a particle slide along a frictionless curve. Find the
curve that takes the particle from A to B in shortest time

A

B

?�
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A

B

?�

x

y

dt =
ds

v
=

√

dx2 + dy2

v
=

√

1+ y′(x)2
√

2�y(x)
dx

Find y(x), with y(0) and y(1) given, that minimizes

J(y) =

∫ 1

0

√

1+ y′(x)2
√

2�y(x)
dx

Solved by John and James Bernoulli, Newton, l’Hospital
Euler: Isoperimetric problems

Example: The largest area covered by a curve of given
length is a circle [see also Dido/cow-skin/Carthage].
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Opt imal Cont rol

The space race (Sputnik 1957)

Putting satellites in orbit

Trajectory planning for interplanetary travel

Reentry into atmosphere

Minimum time problems

Pontryagin’s maximum principle, 1956

Dynamic programming, Bellman 1957

Vitalization of a classical field

Anders Rantzer Lecture 10, Optimal Control p. 6

An example: Goddard’s Rocket Problem (1910)

How to send a rocket as high up in the air as possible?

d

dt







v

h

m






=







u− D

m
− �

v

−γ u







h

m

where u = motor force, D(v,h) = air resistance, m = mass.

Constraints
0 ≤ u ≤ umax, m(t f ) ≥ m1

Criterium
Maximize h(t f ), t f given
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Goddard’s Problem

Can you guess the solution when D(v,h) = 0?

Much harder when D(v,h) ,= 0

Can be optimal to have low v when air resistance is high. Burn
fuel at higher level.

Took about 50 years before a complete solution was found.

Read more about Goddard at http://www.nasa.gov/centers/goddard/
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Opt imal Cont rol Problem. Cons tituents

Control signal u(t), 0 ≤ t ≤ t f

Criterium h(t f ).

Differential equations relating h(t f ) and u

Constraints on u

Constraints on x(0) and x(t f )

t f can be fixed or a free variable
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Out line

○ Introduction

• Static Optimization wit h Constrain ts

○ Optimization with Dynamic Constraints

○ The Maximum Principle

○ Examples
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Preliminary: Static Opt imization

Minimize �1(x,u), x ∈ Rn and u ∈ Rm subject to �2(x,u) = 0
(Assume x can be solved for in �2 given u)
Introduce the Lagrange function

L(x,u,λ) = �1(x,u) + λT�2(x,u)

Consider variation of L

δ �1 = δL =
�L

�x
δ x +

�L

�u
δ u

where λ ∈ Rn are the adjoined variables.

Necessary conditions for local minimum

�L

�x
= 0

�L

�u
= 0

Note: Difference if constrained control!
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Example - static opt imization

Minimize
�1(x1, x2) = x

2
1 + x

2
2

with the constraint that

�2(x1, x2) = x1 ⋅ x2 − 1 = 0
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4
level curves x2+y2=x and constraint xy=1

 

 

x
2

x1

Plot with level curves for constant �1 and the constraint �2 = 0,
repectively.
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Static Opt imization cont ’d

Solving the equations

�L

�x
=
��1
�x

+ λT
��2
�x

= 0[ λT = −
��1
�x

(
��2
�x

)−1

�L

�u
=
��1
�u

+ λT
��2
�u

= 0[
��1
�u

−
��1
�x

(
��2
�x

)−1 ��2
�u

= 0

This gives m equations to solve for u. Note that
��2
�x

must be

non-singular (which it should be if u determines x through �2).

Sufficient condition for local minimum

�2L

�u2
> 0
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Out line

○ Introduction

○ Static Optimization with Constraints

• Optimization wit h Dynamic Constrain ts

○ The Maximum Principle

○ Examples
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Opt imization with Dynamic Cons traint

Optimal Control Problem

min
u
J = min

u

{

φ(x(t f )) +

∫ t f

t0

L(x,u) dt

}

subject to
ẋ = f (x,u), x(t0) = x0

Introduce Hamiltonian: H(x,u,λ) = L(x,u) + λT f (x,u)

J = φ(x(t f )) +

∫ t f

t0

[

L(x,u) + λT( f − ẋ)
]

dt

= φ(x(t f )) −
[

λT x
]t f

t0
+

∫ t f

t0

[

H + λ̇T x
]

dt

where the second equality is obtained from "integration by
parts".
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Opt imization with Dynamic Cons traint cont ’d

Variation of J:

δ J =

[(
�φ

�x
− λT

)

δ x

]

t=t f

+

∫ t f

t0

[(
�H

�x
+ λ̇T

)

δ x +
�H

�u
δ u

]

dt

Necessary conditions for local minimum (δ J = 0)

λ̇T = −
�H

�x
ẋT =

�H

�λ

�H

�u
= 0

λ(t f )
T =

�φ

�x

∣
∣
∣
∣
t=t f

x(t0) = x0

Adjoined, or co-state, variables, λ(t)

λ specified at t = t f and x at t = t0
Two Point Boundary Value Problem (TPBV)

For sufficiency �2H
�u2

≥ 0
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Out line

○ Introduction

○ Static Optimization with Constraints

○ Optimization with Dynamic Constraints

• The Maximum Princip le

○ Examples
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Problem Formulation (1)

Standard form (1):

Minimize

∫ t f

0

Trajectory cost
︷ ︸︸ ︷

L(x(t),u(t)) dt+

Final cost
︷ ︸︸ ︷

φ(x(t f ))

ẋ(t) = f (x(t),u(t))

u(t) ∈ U , 0 ≤ t ≤ t f , t f given

x(0) = x0

x(t) ∈ Rn, u(t) ∈ Rm

U control constraints

Here we have a fixed end-time t f . This will be relaxed later on.
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The Maximum Princ iple (18.2)

Introduce the Hamilt on ian

H(x,u,λ) = L(x,u) + λT(t) f (x,u).

Suppose optimization problem (1) has a solution {u∗(t), x∗(t)}.
Then the optimal solution must satisfy

min
u∈U

H(x∗(t),u,λ(t)) = H(x∗(t),u∗(t),λ(t)), 0 ≤ t ≤ t f ,

where λ(t) solves the adjoin t equation

dλ(t)/dt = −HTx (x
∗(t),u∗(t),λ(t)), with λ(t f ) = φTx (x

∗(t f ))

Notation

Hx =
�H

�x
=

(
�H

�x1

�H

�x2
. . .

)
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Remarks

Proof: If you are theoretically interested look at proof in [Glad &
Ljung].

The idea is simply to note that every change of u(t) from the
suggested optimal u∗(t) must lead to larger value of the
criterium.

Should be called “minimum principle”

λ(t) are called the Lagrange mult ip liers or the adjoin t
variables
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Remarks

The Maximum Principle gives necessa ry conditions

A pair (u∗(⋅), x∗(⋅)) is called extremal the conditions of the
Maximum Principle are satisfied. Many extremals can exist.

The maximum principle gives all possible candidates.

However, there might not exist a minimum!

Example

Minimize x(1) when ẋ(t) = u(t), x(0) = 0 and u(t) is free

Why doesn’t there exist a minimum?
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Out line

○ Introduction

○ Static Optimization with Constraints

○ Optimization with Dynamic Constraints

○ The Maximum Principle

• Examples
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Example–Boat in Stream

x1

x2

v(x2)

min − x1(T)
ẋ1 = v(x2) + u1
ẋ2 = u2
x1(0) = 0
x2(0) = 0
u21 + u

2
2 = 1

Speed of water v(x2) in x1 direction. Move maximum distance
in x1-direction in fixed time T

Assume v linear so that v′(x2) = 1
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Solut ion

Hamilt on ian:

H = 0+ λT f =
[
λ1 λ2

]
[
f1
f2

]

= λ1(v(x2) + u1) + λ2u2

Adjoin t equation:
[

λ̇1
λ̇2

]

=

[
−�H/�x1
−�H/�x2

]

=

[
0

−v′(x2)λ1

]

=

[
0

−λ1

]

with boundary conditions
[

λ1(T)
λ2(T)

]

=

[
�φ/�x1px=x∗(t f )

�φ/�x2px=x∗(t f )

]

=

[
−1
0

]

This gives λ1(t) = −1, λ2(t) = t− T
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Solut ion

Optimalit y: Control signal should solve

min
u2
1
+u2
2
=1

λ1(v(x2) + u1) + λ2u2

Minimize λ1u1 + λ2u2 so that (u1,u2) has length 1

u1(t) = −
λ1(t)

√

λ2
1
(t) + λ2

2
(t)
, u2(t) = −

λ2(t)
√

λ2
1
(t) + λ2

2
(t)

u1(t) =
1

√

1+ (t− T)2
, u2(t) =

T − t
√

1+ (t− T)2

See fig 18.1 for plots

Remark: It can be shown that this optimal control problem has a minimum.

Hence it must be the one we found, since this was the only solution to MP
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5 min exercise

Solve the optimal control problem

min

∫ 1

0

u4dt+ x(1)

ẋ = −x + u

x(0) = 0
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Goddard’s Rocket Problem revisited

How to send a rocket as high up in the air as poss ible?

d

dt





v

h

m



 =






u− D

m
− �

v

−γ u






h

m

(v(0),h(0),m(0)) = (0, 0,m0), �,γ > 0
u motor force, D = D(v,h) air resistance

Constraints: 0 ≤ u ≤ umax and m(t f ) = m1 (empty)

Optimization criterion: maxu h(t f )
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Problem Formulation (2)

min
u:[0,t f ]→U

∫ t f

0

L(x(t),u(t)) dt+ φ(x(t f ))

ẋ(t) = f (x(t),u(t)), x(0) = x0

ψ (x(t f )) = 0

Note the differences compared to standard form:

r end constraints

Ψ(t f , x(t f )) =





Ψ1(t f , x(t f ))
...

Ψr(t f , x(t f ))




= 0

t f free variable (i.e., not specified a priori)
time varying final penalty, φ(t f , x(t f ))

The Maximum Principle will be generalized in the next lecture!
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Summary

○ Introduction

○ Static Optimization with Constraints

○ Optimization with Dynamic Constraints

○ The Maximum Principle

○ Examples
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