Lecture 8 — Nonlinear Control Design

» Exact-linearization
» Lyapunov-based design

> Lab2
» Adaptive control
» Backstepping

» Hybrid / Piece-wise linear control
» NOTE: Only overview!

Exact linearization: example [one-link robot ]

Zk

me?6 +d6 +mlgcos @ =u

where d is the viscous damping.
The control u = 7 is the applied torque

Design state feedback controller u = u(x) with x = (8,6)7

Introduce new control variable v and let
u = mf? + d + mlg cos 6

Then
b=v

Choose e.g. a PD-controller
v =10(8,8) = kp(Oref — 0) — kb
This gives the closed-loop system:
0+ kg0 + kp8 = kpOret

Hence, u = m€2[k,(8 — BOrer) — kab] + d6 + még cos 6

Computed torque

The computed torque
(also known as "Exact linearization", "dynamic inversion" , etc. )
u=M(6)+C(6,0)8+G(0)

; @)
v = Kp(eref - 9) - Kde,

gives closed-loop system
6+ Kdé + er = erRef
The matrices K, and K, can be chosen diagonal (no

cross-terms) and then this decouples into n independent
second-order equations.

Exact Feedback Linearization

Idea: Find state feedback v = u(x,v) so that nonlinear system
%= f(x)+g(x)u
turns into linear system
x =Ax + Bvu

and then apply linear control design method.
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Multi-link robot (n-joints)

General form
M(0)6+C(6,0)0+G(0) =u, 6€R"
Called fully actuated if n indep. actuators,

M n x ninertia matrix, M = MT >0
COH n x 1 vector of centrifugal and Coriolis forces
G n x 1vector of gravitation terms

Cascade control - revisited

For systems with one control signal and many outputs:
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> Gg,(s) controls the subsystem Gp,(s) (= Gy,r,(s) = 1)
> Gg,(s) controls the subsystem Gp,(s)

Often used in motion control, e.g., robotics, with cascaded
velocity and position controllers, BUT should have velocity
reference feedforward!!



Example of couplings

Example: Couplings and interaction: "good"/"bad"

"Robot Furuta pendulum": Underactuated — coupling as control action
"Ordinary" Robot control:

Often cascaded PI-controllers for each joint

(inner velocity and outer position loop)

Feedforward for
» disturbance rejection between joints
» velocity and torque reference (improved tracking!)

Lyapuno v-Based Control Design Methods Lab 2 : Energy shaping for swing-up control

%= f(x,u)

» Find stabilizing state feedback u = u(x)
» Verify stability through Lyapunov function
» Methods depend on structure of f
Examples are energy shaping as in Lab 2 and e.g.

Back-stepping control design, which require certain f
discussed later.

Use Lyapunov-based design for swing-up control.

Lab 2 : Energy shaping for swing-up control Example of Lyapuno v-based design

Consider the nonlinear system

&1 = —8x; + 2x1x% +u @)

. 3
Xg = —x2 — X2,

Find a nonlinear feedback control law which makes the origin

Rough outline of method to get the pendulum to the upright globally asymptotically stable.

position
We try the standard Lyapunov function candidate
» Find expression for total energy E of the pendulum

) S 1
(potential energy + klne.tlc energ.j)-/) V(x1,x2) = 5 (xf T x%)

» Let E, be energy in upright position.

» Look at deviation V = %(E —-E)?>0 which is radially unbounded, V(0,0) = 0, and

» Find "swing strategy" of control torque u such that 4/ < 0 V(x1,22) > 0 V(x1, %) # (0, 0).

Example - cont'd

Alt.2
Inserting the control law, u = —2x1xZ, we get

V = x1%1 + %229 = (=321 + 2x1x§ +u)xs + (—xg — xg9)x2
= —3x% — x2+ux;+2x7x7 — x5
V = —8x2—xf —2x%x% 4+ 2x3x2 —x% = —3x2—xZ—x2 <0, Vx#0

We would like to have -0

V<o V(x1, 22) # (0, 0) Both control alternatives gives global asymptotic stability of the
Alt.1 origin.
Inserting the control law, u = —a?, we get

; 2
V = —3x2—xl—xt+2xix2—xt = —Sx%—xg—(x% - x%) <0, Vx#0




Consider the system
. 3
X1 =X
o 3)
Xo =U
Find a globally asymptotically stabilizing control law u = u(x).
Attempt 1: Try the standard Lyapunov function candidate
1
V(x1,x2) = 3 (x% + x%) ,

which is radially unbounded, V(0,0) = 0, and
V(xl,xz) >0 V(xl, xz) #* (0, 0).

V:x’lxl—i-x'zxz:xg’»x1+u»x2=x2(x%x1+u):—x%SO
———
e

where we chose

However V = 0 as soon as x = 0 (Note: x; could be anything).

According to LaSalle’s theorem the set
E = {x|V =0} = {(x1, 0)} Va1

What is the largest invariant set M ?

Plugging in the control law u = —x9 — x%xl, we get

a‘clzxg

4)

3232 = —X9 — x%xl

and we see that if we start anywhere on the line {(x;, 0)} we
will stay in the same point as both &; = 0 and %3 = 0, thus M=E
and we will not converge to the origin, but get stuck on the line
X9 = 0.

_ 2
U= —X2 — XgX1 Draw phase-plot with e.g., pplane and study the behaviour.
Attempt 2: With
u=-—x1—Xx2

L .3

1= () we get the dynamics

X9 =u

2 561 = xg
) ) o (6)

Try the Lyapunov function candid ate Xg = —X1 — X2

1 1
V(x1,2%2) = ix% + Zx%,

which satisfies

» V(0,0)=0
> V(xl,xg) > 0, ‘v’(xl, xz) 7& (0, 0).
» radially unbounded,

ar = %1x1 +5czxg = xg(xl +u)= —x% <0
u = —x1 — xoif We US€ u = —x1 — x9

Adaptive Noise Cancellation Revisited

V =0ifxg =0, thus
E ={x|V =0} = {(x1, 0)} Va1
However, now the only possibility to stay on xg = 0isif x; = 0, (

else x; # 0 and we will leave the line x; = 0).
Thus, the largest invariant set

M = (0,0)

According to the Invariant Set Theorem (LaSalle) all solutions
will end up in M and so the origin is GAS.

Draw phase-plot with e.g., pplane and study the behaviour.

v [ | x _ %
st+a o
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X+ ax = bu

X+ax=bu
Introduce x =x—x, a =a—a, b=b—b.

Want to design adaptation law so that x — 0

Back-Stepping Control Design

We want to design a state feedback u = u(x) that stabilizes

9:61 i f(x1) + g(x1)xe %
X9 =U
at x = 0 with £(0) = 0.

Idea: See the system as a cascade connection. Design
controller first for the inner loop and then for the outer.

Let us try the Lyapunov function

V= 2@ e + 1)
V = %% + Yol + 75bb =
= %(—aX — G% + bu) + Ya@d + 75bb = —ai?
where the last equality follows if we choose

~ ~ 1 = = ~
a=—-a=—xx b=-b=——2xu

Ya b
Invariant set: x = 0.
This proves that x — 0.

(The parameters a and b do not necessarily converge: u = 0.)

Suppose the partial system
%1 = f(x1) + g(x1)0

can be stabilized by & = ¢(x1) and there exists Lyapunov fcn
Vi= Vl(xl) such that

Vita) = 9 (f(xl) n g(xl)(p(xl)) < W(x)

for some positive definite function W.



The Trick

Equation (7) can be rewritten as

a1 = f(x1) + g(x1)P(x1) + g(x1) [x2 — #(x1)]

3232=u

Consider Vy(x1,x9) = Vi(x1) + ¢2/2. Then,

V(o) = O (f(xl) N g(x1)¢(x1)) + ) + ¢

dx
A%
< W) + 5 g(x)d + &
X1
Choosing
A%}
= —ng(xl) — kg, k>0
gives

Vz(xl,xz) S —W(xl) — kgz

Hence, x = 0 is asymptotically stable for (7) with control law
u(x) = ¢(x) + v(x).
If V1 radially unbounded, then global stability.

Strict Feedback Systems

Back-stepping Lemma can be applied to stabilize systems on
strict feedback form:

%1 = fi(x1) + g1(x1)xe
%2 = fa(x1,%2) + ga(x1,%2)x3
%3 = fa(x1,%2,%3) + g3(x1, %2, ¥3)%4

Xp = fn(xly---yxn) + gn(xl,...,xn)u
where g;, # 0

Note: «x1,...,x; do not depend on xj.9,...,%n.

Example

Design back-stepping controller for

. 2 . .
X1 =x7+x2, X2=x3, X3=Uu

Step 0 Verify strict feedback form
Step 1 Consider first subsystem

X1 = x% + ¢1(x1), X9 = U1

where ¢1(x1) = —x% — x7 stabilizes the first equation. With
Vi(x1) = 22 /2, Back-Stepping Lemma gives

u; = (—le - 1)(36% + xz) — X1 — (JCQ + x% + xl) = ¢2(x1,x2)

Vo = 22/2 4 (x2 + 22 + x1)%/2

Introduce new state ¢ = xg — ¢(x1) and control v = u — ¢:

%1 = f(x1) + g(x1)p(x1) + g(x1)¢
C=v

where d d
b = 2y = 2 (f(xl) + g(xl)x2)

i%)ﬂ f|i|g(x1) - f

—¢(x1)

f+a¢

Back-Stepping Lemma

Lemma: Letz = (x,...,x;-1)7 and

2= [(2) +9(z)x
:)'Ck =u

Assume ¢(0) = 0, f(0) =0,
2= f(2) + 9(2)¢(2)
stable, and V' (z) a Lyapunov fcn (with V < —W). Then,
d av
w=2 (£ + atetm) - Trale) = (au— 0(2)
stabilizes x = 0 with V(2) + (xz — ¢(2))?/2 being a Lyapunov

fen.

Back-Stepping

Back-Stepping Lemma can be applied recursively to a system
x=f(x)+g(x)u

on strict feedback form.

Back-stepping generates stabilizing feedbacks @ (x1,.. ., xz)
(equal to u in Back-Stepping Lemma) and Lyapunov functions

Vi(x1, -, x5) = Vo1 (%1, .., Xpo1) + [ — Pr—1]?/2

by “stepping back” from x; to u

Back-stepping results in the final state feedback

U= Pn(x1,...,%n)

Step 2 Applying Back-Stepping Lemma on

xlzx%+x2

x2 = X3
3233 =u
gives
v=u= g2 <f(2) + g(z)xn> ~ L2 40) ~ (xn— 62(2))
= g%i(x% +x2) + %xs - Z—Zg — (x3 — @2 (x1,%2))

which globally stabilizes the system.



Hybrid Control

Example of hybrid control

Control problems where there is a mixture between continuous
states and discrete state variables.

Continuous states: position, velocity, temperature, pressure

Discrete states: on/off variables, controller modes, loss of
actuators, loss of sensors, relays, etc

Discontinuous differential equations

Much active field, much left to understand

Aircraft Example

max —— % 71,

(Branicky, 1993)

Piecewise quadratic Lyapunov functions

_ | x*Px ifx1 <0
Vi) = { x*Px+nx? ifx; >0

The matrix inequalities

AiP+PA; < O
P >0
A5(P+nE'E)+ (P+nE*E)Ay < 0
P+nE'E > 0
with E = [1 0], have the solution P = diag{1,3},n=17.

Control law that switches between different modes, e.g.
between

» Time optimal control — during large set point changes
» Linear control — close to set point

Phase Plane

No common quadratic Lyapunov function exists.

Lo

- -2 —4
m= 5 )

Az = {20 -2

Flower Example




