Lecture 5 — Input —output stability

or

“How to make a circle out of the point —1 + 07, and different
ways to stay away from it ...
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For what G(s) and £(-) is the closed-loop system stable?

» Lur'e and Postnikov’s problem (1944)

» Aizerman’s conjecture (1949) (False!)

» Kalman'’s conjecture (1957) (False!)

» Solution by Popov (1960) (Led to the Circle Criterion)

Norms

A norm | - || measures size.
A norm is a function from a space Q to R*, such that for all
x,y € Q

> |lx]| >0 and |x||=0 ¢ x=0

>l 4yl < flxll + [yl

> |lax|| = |« - ||x||, forall . € R

Examples
Euclidean norm: ||z|| = \/m
Max norm: ||x|| = max{|x1],..., |%n|}

Parseval's Theorem

Theorem If x,y € Ly have the Fourier transforms

X (iw) = /0 Yot dt, (o) = /0 " oty

then - -
/0 T (O)x(t)dt = % /_ _Y'(i0)X (j0)do.

In particular,

(o) 1 00
2 _ 2, 1 N2
sl = [ le@Pde= 5 [ X (0)Pdo.

|lx|lz < oo corresponds to bounded energy.

Today'’s Goal

To understand

» signal norms
» system gain
» bounded input bounded output (BIBO) stability

To be able to analyze stability using

» the Small Gain Theorem,
» the Circle Criterion,
» Passivity

Material

» [Glad & Ljung]: Ch 1.5-1.6, 12.3
[Khalil]: Ch 5-7.1; [Slotine & Li]: Ch.4.7-4.8

» lecture slides

Gain

Idea: Generalize static gain to nonlinear dynamical systems

The gain y of S should tell what is the largest amplification from
utoy

Here S can be a constant, a matrix, a linear time-invariant
system, etc

Question: How should we measure the size of u and y?

Signal Norms

A signal x(t) is a function from R* to R.
A signal norm is a way to measure the size of x(t).

Examples

2-norm (energy norm): |lx|lz = 1/ [¢* |x(2)[2d¢

sup-norm: ||xfle = sup;eg+ |x(¢)]

The space of signals with ||x||2 < oo is denoted Ls.

System Gain

A system S is a map between two signal spaces: y = S(u).

u y
—] S ——
The gain of S is defined as y(S) = sup Iz _ sup ISGo)llz

wety el er, Il

Example The gain of a static relation y(t) = au(t) is

loully _ - lolull2

y(@) = sup = o]

ver, lulle — per, lull2



2 minute exercise: Show that y(S1S2) < 7(S1)7(Ss).
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Example—Gain of a Stable Linear System

Y@ [ 6

Gu .
7(G) = sup IGulls _ sup |G(iw)|

wer, lulz  oc00)

Proof: Assume |G (iw)| < K for w € (0,00) and |G(iw.)| = K
for some w,. Parseval’s theorem gives

2 1 0 2
= Y(
ol = 57 [ I¥(0)Pdo
1 [ . ,
=, | IGlo)PIUGo)Pdo < KJul3

Equality by choosing u(¢) = sin w.t.

The Small Gain Theorem
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Theorem
Assume S; and S, are BIBO stable. If

7(81)r(S2) <1

then the closed-loop map from (r1,72) to (e, e2) is BIBO stable.

Linear System with Static Nonlinear Feedback (1)

Ky
f(»)
y
G(s):ﬁ and Og@gl{

7(G)=2and y(f) < K.

The small gain theorem gives that K € [0,1/2) implies BIBO
stability.

Example—Gain of a Static Nonlinearity

|f)l < Klxf,  f(x") = Kx*

Kx
f(x)

u(?) N

{oe) o0
13 = / 72 (u(t))dt < / K2u2(t)dt = K2|ul}
0 0
u(t) = x*, ¢t € (0,00) gives equality =

Y
Y(f) = supues, ﬁ -K

BIBO Stability

S /() — sup 1212

uer, Iz

Definition
S is bounded-input bounded-output (BIBO) stable if ¥(S) < oco.

Example: If x = Ax is asymptotically stable then
G(s) = C(sI — A)"'B + D is BIBO stable.

“Proof” of the Small Gain Theorem

Existence of solution (ey, e2) for every (r1,r2) has to be verified
separately. Then

llexlle < lirall2 + ¥ (S2)[lIr2llz + ¥ (S1)lle1lle]
gives
lIr1ll2 + 7 (S2)llr2ll2
1—7(S2)7(S1)

7(S2)7(S1) <1, [Ir1ll2 < o0, ||rellz < oo give [leq[|s < co.
Similarly we get

llealle <

lIrallz + 7 (S)lIralle

lezlle < 4 (817 (S2)

S0 also e is bounded.

The Nyquist Theorem

Theorem

The closed loop system is stable iff the number of
counter-clockwise encirclements of —1 by G(Q) (note: @
increasing) equals the number of open loop unstable poles.

a@__. .




The Small Gain Theorem can be Conservative

Let f(y) = Ky for the previous system.

The Nyquist Theorem proves stability when K € [0, co).
The Small Gain Theorem proves stability when K € [0,1/2).

Other cases

G: stable system

» 0 < k1 < kg: Stay outside circle
» 0 =k < kg: Stay to the right of the line Re s = —1/k9
» k1 < 0 < kg: Stay inside the circle

Other cases: Multiply f and G with —1.

G: Unstable system
To be able to guarantee stability, z; and kg must have same
sign (otherwise unstable for £ = 0)

» 0 < k1 < ko: Encircle the circle p times counter-clockwise
(if @ increasing)

» k1 < kg < 0: Encircle the circle p times counter-clockwise
(if @ increasing)

Proof of the Circle Criterion

Letk = (k1 + k2)/2 and f(y) = f(y) — ky. Then
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?1 =ri —krg

Lyapunov revisited

Original idea: “Energy is decreasing”

x = f(x), x(0) = x9
V(x(T)) = V(x(0)) <0
(+some other conditions on V)

New idea: “Increase in stored energy < added energy”

x = f(x,u), x(0) = x¢
y=h(x)
T
V((T)) - V(x(0)) < /0 o) At ()

external power

The Circle Criterion
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Theorem Consider a feedback loop with y = Gu and
u = —f(y) +r. Assume G(s) is stable and that

Casel: 0<k; <ky<o0

0<k1§%§k2.

If the Nyquist curve of G(s) does not intersect or encircle the
circle defined by the points —1/%; and —1/k9, then the
closed-loop system is BIBO stable from r to y.

Linear System with Static Nonlinear Feedback (2)
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y =
7T K

o G(iw)
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The “circle” is defined by —1/k; = —oco and —1/ke = —1/K.

min Re G(iw) = —1/4

so the Circle Criterion gives that if K € [0,4) the system is
BIBO stable.

Proof of the Circle Criterion (cont’d)

=
N
1
G(iw)
SGT gives stability for |G (iw)|R < 1 with G = G
g y ! T 1+kG
1 1
|Giw)| |G(iw)

Transform this expression through z — 1/z.

Motivation

Will assume the external power has the form ¢(y,u) = yTu.
Only interested in BIBO behavior. Note that

3V > 0 with V(x(0)) = 0 and (??)
<~

T
/ yTudtZ 0
0

Motivated by this we make the following definition



Passive System

Definition The system S is passive from u to y if

T
/ yTudt > 0, foralluandall T >0
0

and strictly passive from u to y if there 3¢ > 0 such that

T
/ yTudt > ey +|ul%), foralluandall T >0
0

2 minute exercise:

S

u ﬁ'3’u Yy
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Passivity of Linear Systems

Theorem An asymptotically stable linear system G(s) is
passive if and only if

Re G(iw) >0, Vo >0
It is strictly passive if and only if there exists ¢ > 0 such that
ReG(iw—¢) >0, Vo >0

Proof: See Slotine and Li p. 139 for the first part.
Example

1 . .
G(s) = por is passive and

strictly passive, 9
G(iw)

1. .
G(s) = = is passive but not
S
strictly passive. o7 wr o os 1

The Passivity Theorem
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Theorem If S; is strictly passive and Sg is passive, then the
closed-loop system is BIBO stable from r to y.

A Useful Notation

Define the scalar produ ct

T
(y,u)T=/0 yT (t)u(t) dt
Cauchy-Schwarz inequality:

e < |ylrlulr

where [y|r = /(y,5)r. Note that |y|e = ||¥l2.

Feedback of Passive Systems is Passive

r e1 y1

— S1
¥e ey I ra

Sy |—O~—

If S; and Sy are passive, then the closed-loop system from
(r1,72) to (¥1,y2) is also passive.

Proof: ,ryr = (y,ri)r + Y2, r2)T
= (y1,71 = y2)r + (y2, 72 + 1)1
= (y,en)r + (y2,e2)7 > 0
Hence, (y,7)r > 0if (y1,e1)r > 0 and (ys,ez)7 > 0

A Strictly Passive System Has Finite Gain

If S is strictly passive, then y(S) < .

Proof: Note that ||y|ls = lim7_ |¥|7-
2 2
(Il + lulr) < e < |ylr - fulr < Iyll2 - llull2

Hence, €|y|2 < ||¥llz - |l]l2, so letting T — oo gives

1
Iolle < llulls

Proof of the Passivity Theorem

S strictly passive and Sg passive give
e(ly1lz +le1ld) < G, e)r + (. e2)r = (377
Therefore
9 1
yalz +¢re = y2,ri = y2)r < )y

or
1
[y1F + |y2lF — 2(ve, ra)r + |13 < ;(y, T

Finally
) 1 1
[yl7 < 2(y2,r2)7 + cnr s (24 - [ylz|r|T

Letting T' — oo gives ||yl < C||r||2 and the result follows



Passivity Theorem is a “Small Phase Theorem” Example—Gain Adaptation

Applications in channel estimation in telecommunication, noise
cancelling etc.

Process
G(s) J
J : a(s)
1 P2 ;
o] Model

O = —ru®bm® —=50), 7>0
Gain Adaptation—Closed-Loop System Gain Adaptation is BIBO Stable
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S is passive (Exercise 4.12), so the closed-loop system is BIBO
stable if G(s) is strictly passive.

Simulation of Gain Adaptation Storage Function

1 . Consider the nonlinear control system
LetG(s) = ——+¢y=1u=sint, 6(0)=0and y* =1

s+1 .
= f(x,u), y=h(x)
: vy A storage function is a C! function V : R* — R such that
rJm
0 » V(0)=0 and V(x) >0, Vx#0
» V(x) <uly, Va,u
Y 5 10 15 20

Remark:

» V(T) represents the stored energy in the system

T
. VT) < / yOu@®di+  V(©)
—— 0 ——

stored energy at¢t =7 ==~ stored energy at¢ = 0
absorbed energy
vT >0

Storage Function and Passivity Lyapunov vs. Passivity

Lemma: If there exists a storage function V for a system Storage function is a generalization of Lyapunov function
x = f(x,u), y=h(x)

with x(0) = 0, then the system is passive.

Lyapunov idea: “Energy is decreasing”
V<o

Proof: Forall T > 0, L .
Passivity idea: “Increase in stored energy < Added energy”

T
ouyr = /0 Y(Ou(@)dt > V(x(T)) = V(x(0)) = V(x(T)) > 0 V <uTy




Example KYP Lemma

Consider an asymptotically stable linear system
x=Ax+ Bu, y=Cx

Assume there exists positive definite symmetric matrices P, @
such that
ATP4+ PA=—-@Q, and BTP=C

Consider V = 0.5xT Px. Then

V =0.5(zTPx + xTPx) = 0.55T(ATP + PA)x + u" BT Px

2
=—05:TQx+uly<uly, x#0 (@)

and hence the system is strictly passive. This fact is part of the
Kalman-Yakubovich-Popov lemma.

Next Lecture

» Describing functions (analysis of oscillations)




