Lecture 2

e Linearization
o Stability definitions

o Simulation in Matlab/Simulink

Material

» Glad& Ljung Ch. 11, 12.1,
(Khalil Ch 2.3, part of 4.1, and 4.3)
(Slotine and Li, pp 40-57)

» Lecture slides

Example - Linearization around equilibrium point

The linearization of
#(t) = f(x(®) = & sinx(®
around the equilibrium xy = nx is given by

#(0) = f/(0)&(0) = J(-1"%()

2 minute exercise: Linearize
WP2=4x®+u
around the solution

)=~ ug(t)=0

Hint:
Plug-in x(¢) = ¢~2 + &(¢), expand the expressions,
and finally remove higher order terms (> 2) of %.

State-space form

Hence, for small (&, %), approximately
(1) = Alxo(t), uo(t))%(t) + B(xo(t), uo(t))a(t)

where (if dim x = 2, dimu = 1)
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B(xo(t),uo(t)) = %(xo(t),uo(t)) = [
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Note that A and B are time dependent! However, if we don't
linearize around a trajectory but linearize around an equilibrium
point (xo(¢),uo(t)) = (x0,u0) then A and B are constant.

|

Today'’s Goal

To be able to

» linearize, both around equilibria and trajectories,

» explain definitions of local and global stability,

» check local stability and local controllability at equilibria
» simulate in Simulink,

Linearization Around a Trajectory

Idea: Make Taylor-expansion around a known solution {xo(¢), uo(¢)}

Neglect small terms (i.e., keep the linear terms, as these will locally
dominate over the higher order terms).

Let dxo/dt = f(xo(¢),uo(t)) be a known solution. How will a small
deviation {%, %} from this solution behave?

d(x() + J?Z)

S = Flaolt) + (), uo(8) + 2(1)

xo(t) + &(£), uo(t) + i (t))

Linearization Around a Trajectory, cont.

Let (x0(¢),uo(¢)) denote a solution to & = f(x,u) and consider
another solution (x(¢),u(t)) = (xo(£) + £(£),uo(t) + &(2)):

&(t) = f(xo(t) + £(2),uo () + a(t))

= f(xo(t),u0(t)) + %(xo(t),uo(t))f(t)

+ %(xo(t),uo(t))ﬁ(t) +0(|1% @l”)

(20(8) + &(2),u0 (2) + ()

Linearization, cont’'d

The linearization of the output equation

around the nominal output yo(¢) = h(xo(2),uo(2)) is given by

() — 30(2)) = C(&) (x(2) — x0(2)) + D (2) (w(?) — uo(?))

where (ifdimy =dimx =2, dimu = 1)
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Example: Rocket

h(t) = v(t)
o(t) = —g + il
AN m(t) = —u(t)

[ ho(2) }
Letug() =uo>0; x0(t) = | vo(t) |; mo(t) = mo — uot.

1 0 0
0 % 120+ | mp |20
0 0

Definition: A norm function ||x|| : x € R" — R satisfies the
following three properties:
> ||x|| = 0 if and only if (iff) x = 0, ||x|| > O otherwise.
> |lax|| = al|x||, for any positive a and any signal vector x.
> (The triangle inequality) ||x + y|| < [|x|| + ||¥l|

x+y

Definition: (Euclidean norm)

x| = (x2 + 22 +...+ x2)1/2

Asymptotic Stability

Definition The equilibrium x = 0 is locally asy mptotically
stable (LAS) if it

1) is stable
2) there exists r > 0 so that if ||x(0)|| < r then

x(¢) — 0ast — oo.

(PhD-exercise: Show that 1) does not follow from 2))

Part 11l: Check local stability and controllability

Part Il: Stability definitions

Loc al Stability

Consider x = f(x) where f(0) =0

Definition The equilibrium x = 0 is stable if, for any R > 0,
there exists r > 0, such that

lx(O))| <r = |x(@)||<R, forallt>0

Otherwise the equilibrium point is unstable.

Global Asymptotic Stability

Definition The equilibrium is said to be globally
asymptotically stable (GAS) if it is LAS and for all x(0) one
has

x(t) > 0ast— oo.

Lyapunov’s Linearization Method

Theorem Assume
%= f()
has the linearization

d
;%) = x0) = A(x(t) — x0)
around the equilibrium point x, and put

a(A) = maxRe(A(4))

> If ¢(A) < 0, then & = f(x) is LAS at xo,
> If ¢ (A) > 0, then & = f(x) is unstable at xo,
» If ¢(A) = 0, then no conclusion can be drawn.

(Proof in Lecture 4)



Example

The linearization of

%1 = —af+x1+sin(xg)

cos(xg) — x5 — By

at xy = [(1)] gives A = [:; _15]

Eigenvalues are given by the characteristic equation

Xg

0=det(Al —A) = (A +1)(A+5)+3

This gives 1 = {—2,—4}, which are both in the left half-plane,
hence the nonlinear system is LAS around x.

Local Controllability

Theorem Assume
= f(x,u)
has the linearization

d
7 (®() = x0) = A(x(t) — x0) + B (u(t) — uo)
around the equilibrium (xo,u) then

> (A, B) controllable = f(x,u) nonlinear locally controllable

Here nonlinear locally controllable is defined as:

Forevery T >0 and £ > 0 the set of states x(T') that can be
reached from x(0) = x¢, by using controls satisfying
lu(t) — uo|| < €, contains a small ball around xo.

5 minute exercise:

Is the ball and beam
7 . 2r ..
st = x¢? + gsing+ 6

nonlinearly locally controllable around
¢ =¢ =x =% =0 (with ¢ as input)?

Remark: This is a bit bit more detailed model of the ball and beam than we
saw in Lecture 1.

However...

And now for the major limitation: The system works only in situations where the car can continuously back up
inte a space - not for those tight spots where you must inch your way into a space by geing back and forth,
wrestling with the wheel

Unfortunately, such spots are quite commen in Japan, And that's precisely when you wish you had a smart car
that would graciously help you park,

For me, the parking system also took some getting used to.

You can't turn the car too much before you start parking because the car will get confused and tell you to start
over. You must decistvely glide straight into pre-parking position before the car will let you begin jiggling the
arrows on the panel,

‘When I tried the system in our tiny parking lot at home, the system kept flashing warnings on the screen that the.
car was 100 close or too far from where I wanted to park,

Bosch 2008 (Automatic parking assistance)

» Multiple turns
» parking lot > car length + 80 cm

More parking in lecture 12

Example, cont.

The linearization around x; = x9 = 0,u = 0 is given by

3‘61 = X2
xg = gxl
l

It is not controllable, hence no conclusion can be drawn about
nonlinear controllability

However, simulations show that the system is stabilized by

2

u(t) = ew” sin(wt)

if @ is large enough !

We will come back to this example later.
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Example

An inverted pendulum with vertically moving pivot point

§(0) = 7 (g + u(t) sin(o(2)),

where u(t) is acceleration, can be written as

X1 = X2
1
Xg = 7 (g + u)sin(x;)

Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

Tp1 = f(xr)
is asymptotically stable at x* if the linearization

% _has all eigenvalues in |1] < 1

(that is, within the unit circle).



Example (cont'd): Numerical iteration

Trp1 = f(xr)

to find fixed point
x = flx)

When does the iteration converge?

Simulink

[ simulink Library Browser 1ol x|

Fie Edt Yew Help

0 & 4 find ‘|

Continuous: simulink3/Cantinuaus

W Simulink. -
] Continuous
] Discrate
| Functions & Tables
2] Math
> matlab 2] Norlesr

5] signals & systems
>> simulink &) srks
5] sources
| subsystems
W COMA Reference Blockset.
W Commurications Blacksst
W Control System Taalhox —
8 05P Blockset.
W Developers Kit For TIDSP
WA Disls & Gauges Blockset
W Fixed-Paint Blockset.
W Fuzzy Logic Taolbox
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Noriinear
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Choos e Simulation Parameters

([ Simulation parameters: untitled |

So\verl Wiarkspace IfEIl Dlaqnushcsl HTWl ATW Extamall

Simulation time

’V Start time: (0.0 Step time: [0 |
Solver option:
Tupe: Marisble—step i | 45 (Darmand-Frince) =1
Max sten size:  |auto Felative tolerance: | 13-3

Initial step size: |auto Absolute tolerance: | 16-6

Output options

Fefine autput = Fefine factor: |1 |
saply | Fevert Help Clase

Don't forget “Apply”

How To Get Better Accuracy

Modify Refine, Absolute and Relative Tolerances, Integration

method

Refine adds interpolation points:

Part IV: Simulation

Often the only method

&= f(x)
» ACSL
» Simnon
» Simulink
F(x,x)=0
» Omsim

http://www.control.lth.se/~cace/omsim.html

» Dymola http://www.dynasim.se/
» Modelica

http://www.dynasim.se/Modelica/index.html

Special purpose
» Spice (electronics)
» EMTP (electromagnetic transients)
» Adams (mechanical systems)

Simulink, An Example

File —-> New —> Model
Double click on Continuous
Transfer Fcn

Step (in Sources)

Scope (in Sinks)

Connect (mouse-left)
Simulation->Parameters

y
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Step Transfer Fcn Scope

Save Results to Workspace

Clock

To Workspacel
oooo 1
[X) — y
s+l
Signal Transfer Fcn To Workspace

Generator

Check “Save format” of output blocks (“Array” instead of “Structure”)

>> plot(t,y)

(or use “Structure” which also contains the time information.)

Points were correct, only the plot was

bad
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Use Scripts to Document Simulations

Submodels, Example: Water tanks

If the block-diagram is saved to stepmodel.mdl,
the following Script-file simstepmodel.m simulates the system:

open_system(’stepmodel’)
set_param(’stepmodel’, ’RelTol’,’1e-3’)
set_param(’stepmodel’, ’AbsTol’,’1le-6’)
set_param(’stepmodel’, ’Refine’,’1’)
tic

sim(’stepmodel’,6)

toc
subplot(2,1,1),plot(t,y),title(’y’)
subplot(2,1,2),plot(t,u),title(’u’)

Linearization in Simulink

Use the command trim to find e.g., stationary points to a
system >> A=2.7e-3;a=7e-6,g=9.8;

>> Y, Example to find input u for desired states/output
>> [x0,u0,y0l=trim(’flow’,[0.1 0.1]1’,[1,0.1)
x0 =
0.1000
0.1000
u0 =
8.3996e-06
yo =
0.1000

Linearization in Simulink; Alternative

By right-clicking on a signal connector in a Simulink model you
can add “Linearization points” (inputs and/or outputs).

Start a “Control and Estimation Tool Manager” to get a linearized
model by
Tools -> Control Design ->Linear analysis ...

where you can set the operating points, export linearized model to
Workspace (Model-> Export to Workspace) and much more.

Today

Equation for one water tank:
h o= (u-q)/A
g = ay29Vh

Corresponding Simulink model:

Out

Subsystem2
Subsystem

Linearization in Simulink, cont.

Use the command linmod to find a linear approximation of the
system around an operating point:

>> [aa,bb,cc,dd]=1linmod(’flow’,x0,u0);

>> sys=ss(aa,bb,cc,dd);
>> bode(sys)

Computer exercise

Simulation of JAS 39 Gripen

| theta

reference
pitch angle

clock time|

» Simulation
» Analysis of PIO using describing functions
» Improve design

» Linearization, both around equilibria and trajectories,
Definitions of local and global stability,

How to check local stability and local controllability at
equilibria

Simulation tool: Simulink,

v

v

v

Next Lecture

» Phase plane analysis
» Classification of equilibria




