
Modern Nonlinear Control

Lecture 14

• Observers cont’d

—————————

• Lie-brackets and nonlinear controllability

• The parking problem

• Integral Quadratic Constraints

• SOS-tools

• Hybrid control — Piecewise linear systems

• Adaptive control

• Information about master theses projects

• How to find more information

Motivation: Simple example

Consider the following simple feedback system





[
ẋ1
ẋ2

]
=

[
0 1

−3 1

] [
x1
x2

]
+

[
0

−1

]
u = Ax + Bu (Σ)

y =
[
1 0

]
x = Cx

u = sat(x2 ⋅ (2+ sin2(t)))

Σ

y = Cx
u

$
2+ sin2(t)

Example cont’d

◮ linear subsystem unstable

◮ input saturation [At best local stability.

————————– Tools ————————-

Locally valid Quadratic Contraint (QC) (sector condition)

0 ≤ (κ2 ⋅ x2 − u)(u − κ1 ⋅ x2) =

[
x1 x2 u

]


(
0 0

0 −3

) (
0

2

)

(
0 2

)
−1





x1
x2
u


 for some px2p < c

κ1 = 1 Lower bound :
′linear feedback stability cond.′

u = κ x2,κ ∈ (1,∞)
κ2 = 3 Upper bound :

sector of nonlinearity

Preliminaries

State feedback





ẋ = Ax + Bu = Ax + Bφ(x)
y= Cx
u = φ(x)

Observer feedback





ẋ = Ax + Bu
y = Cx
˙̂x = Ax̂ + Bu+ L(y− Cx̂)
u = φ(x̂)

Asymptotically stable for state feedback u = φ(x)
Re-write with error dynamics (e = x̂ − x)





ė = (A− LC)e
ẋ = Ax + Bφ(x + e) + LCe
u = φ(x̂)

Example: Matched uncertainty

u
+

$

x

∆

∫

ϕ(⋅)

ẋ = u+ϕ(x)∆(t)

Example cont.

Example:

Exponentially decaying disturbance ∆(t) = ∆(0)e−kt

linear feedback u = −cx, c > 0
ϕ(x) = x2

ẋ = −cx + ∆(0)e−ktx2

Similar to peaking problem in the first lecture: Finite

escape of solution to infinity if ∆(0)x(0) > c+ k

We want to guarantee that x(t) stay bounded for all initial values

x(0) and all bounded disturbances ∆(t)

Nonlinear damping

Modify the control law in the previous example as:

u = −cx − s(x)x

where

−s(x)x
will be denoted nonlinear damping.

Use the Lyapunov function candidate V = x
2

2

V̇ = xu+ xϕ(x)∆
= −cx2 − x2s(x) + xϕ(x)∆

How to proceed?

Choose

s(x) = κϕ2(x)
to complete the squares!

V̇ = −cx2 − x2s(x) + xϕ(x)∆

= −cx2 − κ

[
xϕ − ∆

2κ

]2
+κ ⋅

∆2

4κ 2
≤ −cx2+∆2

4κ

Note! V̇ is negative whenever

px(t)p ≥ ∆

2
√

κ c

Can show that x(t) converges to the set

R =
{
x : px(t)p ≤ ∆

2
√

κ c

}

i.e. x(t) stays bounded for all bounded disturbances ∆

Remark: The nonlinear damping −κ xϕ2(x) renders the system

Input-To-State Stable (ISS) with respect to the disturbance.

Overview

◮ To give a glimpse of modern nonlinear control. The theory

in this lecture will not be part of the exam∗.

Material

◮ Lecture slides

◮ Matrial covered in
◮ Slotine and Li, pp. 191-262
◮ Glad & Ljung Ch 17.1
◮ Khalil Ch 13.1

Controllability

Linear case

ẋ = Ax + Bu
All controllability definitions coincide

0→ x(T),
x(0) → 0,
x(0) → x(T)

T either fixed or free

Rank condition System is controllable iff

Wn =

B AB . . . An−1B


 full rank

Is there a corresponding result for nonlinear systems?

Lie Brackets

Lie bracket between f (x) and �(x) is defined by

[f ,�] = ���x f −
� f
�x �

Example:

f =

cos x2
x1


 , � =


x1
1


 ,

[f ,�] = ��
�x f −

� f
�x �

=

1 0

0 0





cos x2
x1


−


0 − sin x2
1 0





x1
1




=

cos x2 + sin x2−x1




Why interesting?

ẋ = �1(x)u1 + �2(x)u2

◮ The motion (u1,u2) =





(1, 0), t ∈ [0, ǫ]
(0, 1), t ∈ [ǫ, 2ǫ]

(−1, 0), t ∈ [2ǫ, 3ǫ]
(0,−1), t ∈ [3ǫ, 4ǫ]

gives motion x(4ǫ) = x(0) + ǫ
2[�1,�2] + O(ǫ3)

◮ Φt[�1,�2] = limn→∞(Φ
√
t
n−�2Φ

√
t
n−�1Φ

√
t
n�2 Φ

√
t
n�1)n

◮ The system is controllable if the Lie bracket tree has full

rank (controllable=the states you can reach from x = 0 at fixed time T contains a ball around x = 0)

The Lie Bracket Tree

[�1,�2]

[�1, [�1,�2]]
[�2, [�1,�2]]

[�1, [�1, [�1,�2]]] [�2, [�1, [�1,�2]]] [�1, [�2, [�1,�2]]] [�2, [�2, [�1,�2]]]

Parking Your Car Using Lie-Brackets

ϕ

θ

x

y

(x, y)

d

dt




x

y

ϕ
θ



=




0

0

0

1



u1 +




cos(ϕ + θ)
sin(ϕ + θ)
sin(θ)
0



u2

Parking the Car

Can the car be moved sideways?

Sideways: in the (− sin(ϕ), cos(ϕ), 0, 0)T -direction?

[�1,�2] =
��2
�x �1 −

��1
�x �2

=




0 0 − sin(ϕ + θ) − sin(ϕ + θ)
0 0 cos(ϕ + θ) cos(ϕ + θ)
0 0 0 cos(θ)
0 0 0 0







0

0

0

1



− 0

=




− sin(ϕ + θ)
cos(ϕ + θ)
cos(θ)
0



=: �3 = “wriggle”

Once More

[�3,�2] =
��2
�x �3 −

��3
�x �2 = . . .

=




− sin(ϕ)
cos(ϕ)
0

0



= “sideways”

The motion [�3,�2] takes the car sideways.

(−sin(ϕ), cos(ϕ))

The Parking Theorem

You can get out of any parking lot that is bigger than your car.

Use the following control sequence:

Wriggle, Drive, –Wriggle(this requires a cool head), –Drive

(repeat).

Another example — The unicycle

(x1, x2)
x3

�1 =



cos(x3)
sin(x3)
0


 , �2 =



0

0

1


 , [�1,�2] =



sin(x3)
− cos(x3)
0




Full rank, controllable.

Integral Quadratic Constraint

∆vv

∆

The (possibly nonlinear) operator ∆ on Lm2 [0,∞) is said to

satisfy the IQC defined by Π if

∫ ∞

−∞

[
v̂(iω)
(̂∆v)(iω)

]∗

Π(iω)
[
v̂(iω)
(̂∆v)(iω)

]
dω ≥ 0

for all v ∈ L2[0,∞).

IQC Stability Theorem

G(s)

τ ∆

Let G(s) be stable and proper and let ∆ be causal.

For all τ ∈ [0, 1], suppose the loop is well posed and τ ∆

satisfies the IQC defined by Π(iω). If

[
G(iω)
I

]∗

Π(iω)
[
G(iω)
I

]
< 0 for ω ∈ [0,∞]

then the feedback system is input/output stable.

∆ structure Π(iω) Condition

∆ passive

[
0 I

I 0

]

q∆(iω)q ≤ 1
[
x(iω)I 0

0 −x(iω)I

]
x(iω) ≥ 0

δ ∈ [−1, 1]
[
X (iω) Y(iω)
Y(iω)∗ −X (iω)

]
X = X ∗ ≥ 0
Y = −Y∗

δ (t) ∈ [−1, 1]
[
X Y

YT −X

]

∆(s) = e−θs − 1
[
x(iω)ρ(ω)2 0

0 −x(iω)

]
ρ(ω) =

2maxpθ p≤θ0 sin(θω/2)

A Matlab toolbox for system analysis

http://www.ee.mu.oz.au/staff/cykao/

−e y
G

−4 −2 0 2 4 6 8

−2

0

2

4

6

8

G(iω)

>> abst_init_iqc;

>> G = tf([10 0 0],[1 2 2 1]);

>> e = signal

>> w = signal

>> y = -G*(e+w)

>> w==iqc_monotonic(y)

>> iqc_gain_tbx(e,y)

A servo with friction

2s +2s+12

.01s +s2

Transfer Fcn
Sum1

Sum

Step

Scope

Saturation

s

1

Integrator1

s

1

Integrator

−K−

Gain2

−1

Gain1

10

Gain

An analysis model defined graphically

 Exp(−ds)−1

uncertain delay

performance

monotonic with
restrict rate

2s +2s+12

0.01s +s+.012

Transfer Fcn

Sum2

Sum1
Sum

s

1

Integrator1

s

1

Integrator

10

Gain

ż iqc_gui(’fricSYSTEM’)

extracting information from fricSYSTEM ...

scalar inputs: 5

states: 10

simple q-forms: 7

LMI #1 size = 1 states: 0

LMI #2 size = 1 states: 0

LMI #3 size = 1 states: 0

LMI #4 size = 1 states: 0

LMI #5 size = 1 states: 0

Solving with 62 decision variables ...

ans = 4.7139

A library of analysis objects

1

Out

window

white noise
performance

unknown const

slope nonlinearity

sector+popov

sector

sat−int

Popov

popov IQC

polytope with
restrict rate

polytope

performance

odd slope nonlinearity

norm bounded

monotonic with
restrict rate

harmonic

encapsulated odd deadzone

encapsulated deadzone

diagonal structure

 Exp(−ds)−1

cdelay

(s−1)

s(s+1)

Zero−Pole

1

s+1

Transfer Fcn

|D(t)|<k

TV scalar

Sum
Step Source

x’ = Ax+Bu
 y = Cx+Du

State−Space

STV scalar

Mux

Mux

K

Matrix
Gain

LTI unmodeled

1

Gain

Demux

Demux

1

In

The friction example in text format

d=signal; % disturbance signal

e=signal; % error signal

w1=signal; % friction force

w2=signal; % delay perturbation

u=signal; % control force

v=tf(1,[1 0])*(u-w1) % velocity

x=tf(1,[1 0])*v; % position

e==d-x-w2;

u==10*tf([2 2 1],[0.01 1 0.01])*e;

w1==iqc_monotonic(v,0,[1 5],10)

w2==iqc_cdelay(x,.01)

iqc_gain_tbx(d,e)

SOSTOOLS - A sum of squares optimization toolbox for MATLAB http://www.cds.caltech.edu/sostools/

[Caltech site] [MIT site]

Introduction

We are pleased to introduce SOSTOOLS, a free MATLAB toolbox for formulating and solving sums of
squares (SOS) optimization programs. SOSTOOLS can be used to specify and solve sum of squares
polynomial problems using a very simple, flexible, and intuitive high-level notation. Currently, the SOS
programs are solved using SeDuMi or SDPT3, both well-known semidefinite programming solver, with
SOSTOOLS handling internally all the necessary reformulations and data conversion.

What is a "sum of squares optimization program"? Why would I want such a thing?

A sum of squares (SOS) program, in the simplest case, has the form:

minimize: c_1 * u_1 + ... + c_n * u_n

subject to constraints:

P_i(x) := A_i0(x) + A_i1(x) * u_1 + ... + A_in(x) * u_n

are sums of squares of polynomials (for i=1..n).

Here, the A_ij(x) are multivariate polynomials, and the decision variables u_i are scalars. This is a convex
optimization problem, since the objective function is linear and the set of feasible u_i is convex.

While this looks quite nice, perhaps you are actually interested in more concrete problems such as:

Constrained or unconstrained optimization of polynomial functions.
Mixed continuous-discrete optimization.
Finding Lyapunov or Bendixson-Dulac functions for nonlinear dynamical systems (with polynomial
vector fields).
Deciding copositivity of a matrix.
Inequalities in probability theory.
Distinguishing separable from entangled states in quantum systems.
Or, more generally, problems that deal with basic semialgebraic sets (sets defined by polynomial
equalities and inequalities)..

Although most of these problems are NP-hard, it turns out that useful bounds (or even exact solutions) for all
these problems can be found by formulating them in a sum of squares optimization framework.

Hopefully, by now you’ll be intrigued, and a bit more inclined to think that this sum of squares stuff may
actually be useful to you. If interested, you’ll find a much more detailed explanation of the toolbox, some of the

Hybrid Control

Control problems where there is a mixture between continuous

states and discrete state variables.

Continuous states: position, velocity, temperature, pressure

Discrete states: on/off variables, controller modes, loss of

actuators, loss of sensors, relays, etc

Discontinuous differential equations

Much active field, much left to understand

Example of hybrid control

Control law that switches between different modes, e.g.

between

◮ Time optimal control – during large set point changes

◮ Linear control – close to set point

Aircraft Example

2

K1

+

+

K

-

-n z

αlim

e1

e2

α

2δ

1

q, α

δ

max

r

δ

(Branicky, 1993)

Phase Plane

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

No common quadratic Lyapunov function exists.

A1 =
[
−5 −4
−1 −2

]
A2 =

[
−2 −4
20 −2

]

Piecewise quadratic Lyapunov functions

V (x) =
{
x∗Px if x1 < 0
x∗Px +ηx21 if x1 ≥ 0

The matrix inequalities

A∗
1P+ PA1 < 0

P > 0

A∗
2(P +ηE∗E) + (P +ηE∗E)A2 < 0

P+ηE∗E > 0

with E = [1 0], have the solution P = diag{1, 3}, η = 7.

Flower Example

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

, −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Observability

0 5 10
−1

0

1

t

y(t)

{
ẋ(t) = Ai(t)x(t)
y(t) = Ci(t)x(t)

for x(t) ∈ Xi(t) (1)

Estimate
∫∞
0
pyp2dt given x(0)

Bounds from piecewise quadratic Lyapunov functions

−1 0 1

−1

0

1

−1 0 1

−1

0

1

Number of Cells Lower bound Upper bound

4 0.60 2.50

8 1.33 2.18

16 1.65 1.98

32 1.78 1.88

Adaptive Control/Predictive Control

(Ch. 8 in Slotine and Li / examples in Khalil)

Adaptive Control/Predictive Control HT-Lp 1 (5p)

Many techniques from the nonlinear course are useful

◮ Stability

◮ Lyapunov theory

◮ Passivity

◮ Simulation

Take advantage of your knowledge and read this course!

More Information

◮ Nijmeijer, van der Schaft, Nonlinear Dynamical Control

Systems, Springer Verlag. More theory about Lie-bracket

theory

◮ Vidyasagar, Nonlinear systems analysis, Prentice Hall

◮ Isidori, Nonlinear Control Systems, Springer Verlag

Last Lecture

◮ A quick scan through the material again. Questions.

Take the rest of the lecture to write down questions for me to

the last lecture.

