Modern Nonlinear Control

Lecture 14

e Observers contd

e Lie-brackets and nonlinear controllability

e The parking problem

e Integral Quadratic Constraints

e SOS-tools

o Hybrid control — Piecewise linear systems
o Adaptive control

o Information about master theses projects
e How to find more information

Example contd
» linear subsystem unstable
» input saturation = At best local stability.
Tools
Locally valid Quadratic Contraint (QC) (sector condition)
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"linear feedback stability cond.’
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Ko =3 Upper bound :

sector of nonlinearity

Example: Matched uncertainty
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Motivation: Simple example

Consider the following simple feedback system

[iﬂ = {_03 ﬂ {iﬂ + {_01} u=Ax+Bu (%)
y=[1 0]x=Cx

u = sat(xy - (2 + sin(t)))

2 4 sin’(t)

Preliminaries

State feedback Observer feedback

% =Ax+ Bu
% =Ax+ Bu = Ax + B¢(x) y=Cx
y=Cx %=Ax+ Bu+ L(y— C#)
u=¢(x) u=¢(%)

Asymptotically stable for state feedback u = ¢(x)

Re-write with error dynamics (e = & —x)

é=(A—LC)e
% =Ax+ Bg(x+e)+ LCe
u=9¢(&)

Example cont.

Example:

Exponentially decaying disturbance A(t) = A(0)e*
linear feedback u = —cx, ¢ >0
(x) = «?

& = —cx + A(0)e *x?

Similar to peaking problem in the first lecture: Finite
escape of solution to infinity if A(0)x(0) >c+ %

We want to guarantee that x(t) stay bounded for all initial values

x(0) and all bounded disturbances A(t)

Nonlinear damping

Modify the control law in the previous example as:
u=—cx—s(x)x

where
—s(x)x

will be denoted nonlinear damping.

X2

Use the Lyapunov function candidate V = 9

V = xu + xp(x)A
= —cx? — x%s(x) + 29 (x)A

How to proceed?

Choose

to complete the squares!

V = —cx? — x%s(x) + x9(x)A

=—cx?—x|x A 2+K'A—2 <—cxz+A—2
- o 42 = 4K
Note! V is negative whenever
A
t) >
)] 2 5




Can show that x(¢) converges to the set

R= {x Hx(g)| < 2%/@}

i.e. x(t) stays bounded for all bounded disturbances A

Remark: The nonlinear damping —xx¢?(x) renders the system
Input-To-State Stable (ISS) with respect to the disturbance.

Controllability

Linear case
x=Ax+ Bu

All controllability definitions coincide

0— x(T),
x(0) — 0,
x(0) — x(T)
T either fixed or free
Rank condition System is controllable iff
W, = [B AB A"—lB] full rank

Is there a corresponding result for nonlinear systems?

Why interesting?

% = g1(x)u1 + ga(x)uq

1,0), z€[0,€]
0,1), te€ [e2¢]
(—1,0), t€ [2¢3€]
(0,—1), ¢€ [3¢,4€]
gives motion x(4e) = x(0) + €2[g1, ga] + O(€3)
2 L L 2
> ), = lim (@YY e o))
» The system is controllable if the Lie bracket tree has full

rank (controllable=the states you can reach from x = 0 at fixed time 7' contains a ball around x = 0)

» The motion (u1,ug) =

Overview

» To give a glimpse of modern nonlinear control. The theory
in this lecture will not be part of the exam*.

Material

» Lecture slides

» Matrial covered in
> Slotine and Li, pp. 191-262
» Glad & Ljung Ch 17.1
» Khalil Ch 13.1

Lie Brackets

Lie bracket between f(x) and g(x) is defined by

0 0
(0= 2Ly

COS X9 X1
f=[x1], g=[1],
_99. of

[f,g]—axf 7Y

(10 cosxg| 0 —sinxg x1
~l0 0 X1 1 0 1
_ [ cosxg + sinxz

= _xl

Example:

The Lie Bracket Tree

lg1, (91, 9211 l92, 91, 92]]

lg1,l91, [91, 42111 Joulongelll o1, [92: (916211 2ig2s [91, ge]ll

Parking Your Car Using Lie-Brackets

x 0 cos(p + 6)
d|y| _ |0 sin(@ + 0)
dt || T |o| ™ + sin(6) e
4 1 0

Parking the Car

Can the car be moved sideways?
Sideways: in the (— sin(¢), cos(¢), 0,0)7 -direction?

lg g]=@g —%g
1,92 Ox 1 8.762

0 0 —sin(p+6) —sin(p+0) 0
_ |0 0 cos(p+86) cos(p+86) o _ 0
“{o o 0 cos(6) 0
00 0 0 1
—sin(p + 6)
_ | cosle+0) | _ e
= cos(8) =: g3 = “wriggle
0




Once More

The Parking Theorem

[ ]=@ _093 _
93,92 O gs3 O gs =...

—sin(¢)
cos()

= 0 = “sideways”

0

The motion [gs, g2] takes the car sideways.

(=sin(9), cos(9))

Another example — The unicycle

3

(21, %2)
cos(x3) 0 sin(x3)
g1= [sin(xg)J , 92= [0] , l91,92] = [—COS(JCS)]
0 1 0

Full rank, controllable.

1QC Stability Theorem

TA

G(s) =~

Let G(s) be stable and proper and let A be causal.

For all 7 € [0, 1], suppose the loop is well posed and A
satisfies the IQC defined by I1(iw). If

{ G(;‘w) } M(io) { G(;'w) } <0 form e [0,00]

then the feedback system is input/output stable.

You can get out of any parking lot that is bigger than your car.
Use the following control sequence:

Wriggle, Drive, ~Wriggle(this requires a cool head), —Drive
(repeat).

Integral Quadratic Constraint

The (possibly nonlinear) operator A on Li}[0, c0) is said to
satisfy the IQC defined by 11 if

< | le) ’ ; O(iw)
/—oo [ (AU)(lw) :| H( (0) [ (AU)(LC()) :|d(0 2 0

for all v € L3[0, 00).

A structure I(iw) Condition
A passive {‘; é }
laGoi<1 [T _ 0] #(i0) > 0
seran K@ v xexz
o(t) € [-1,1] { ;(T _1; }
Afs) = e 1 [ x(iw)(f(w)2 —x(()iw) ] maxw;;(i;)s = oo

A Matlab toolbox for system analysis

http://www.ee.mu.oz.au/staff/cykao/

G(im)

[N - -

-4 -2 0 2 4 6 8

>> abst_init_iqc;
>> G = tf([10 0 0],[1 2 2 1]);

>> e = signal
>> w = signal
>> y = -Gx(etw)

>> w==iqc_monotonic(y)
>> iqc_gain_tbx(e,y)

A servo with friction
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An analysis model defined graphically

e

monotonic with
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performance

2522541
0.0152+5+.01

Sum1
Transfer Fon

Integrator Integratort

Exp(-ds)-1

Uncertain delay

A library of analysis objects
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SOSTOOLS - sum ofsquares opimizaton toloox for MATLAT T o ot caltech edulsos oot

Introduction

We are pleased to introduce SOSTOOLS, a free MATLAB toolbox for formulating and solving sums of
squares (SOS) optimization programs. SOSTOOLS can be used to specify and solve sum of squares
polynomial problems using 2 very simple, flexe, and nttive hgh-evel notaton. Curtently,the SOS
programs are solved u . both well-known semidefinite programming solver, with
BE&TEGLS handing intemaly all the necsssary reformulations and data cotwersion.

What is a "sum of squares optimization program"? Why would | want such a thing?
A sum of squares (SOS) program, in the simplest case, has the form
minimize: ¢_1*u_1+...+c_n*un
subject to constraints:
P_i(x) := A_iO(x) + A_i1(x) *u_1+ ...+ A_in(x) *u_n
are sums of squares of polynomials (for i=1..n).

Here, the A_j(x) are multivariate polynomials, and the decision variables u_i are scalars. This is a convex
optimization problem, since the objective function is linear and the set of feasible u_i is convex.

While this looks quite nice, perhaps you are actually interested in more concrete problems such as:

Constrained or unconstrained optimization of polynomial functions.
Mixed continuous-discrete optimization.
Finding Lyapunov or Bendixson-Dulac functions for nonlinear dynamical systems (with polynomial
vector fiel
Deciding cuposmwly ofa mzmx
Inequalities in probability th
Distinguishing separably from artangled states in quantum systems.

. more generally, problems that deal with basic semialgebraic sets (sets defined by polynomial
equalities and inequalities)..

Altnough most ofthese problers,are NP-hard, it turns out that usefulbounds (or even exact soluions)for al
these problems can be found by formulating them in a sum of squares optimization framework.

Hopefully, by now you'l be intrigued, and a bit more inclined to think that this sum of squares stuff may

z iqc_gui(’fricSYSTEM’)
extracting information from fricSYSTEM ...
scalar inputs: 5

states: 10
simple q-forms: 7

LMI #1 size = 1 states: 0
LMI #2 size = 1 states: 0
LMI #3 size = 1 states: 0
LMI #4 size = 1 states: 0
LMI #5 size = 1 states: 0

Solving with 62 decision variables

ans = 4.7139

The friction example in text format

d=signal; % disturbance signal
e=signal; % error signal
wl=signal; % friction force
w2=signal; % delay perturbation
u=signal; % control force
v=tf(1,[1 0])*(u-wil) % velocity

x=tf (1, [1 0])*v; % position

e==d-x-w2;

u==10*%t£([2 2 1],[0.01 1 0.01])*e;
==igc_monotonic(v,0,[1 5],10)
==iqc_cdelay(x,.01)

igc_gain_tbx(d,e)

Hybrid Control

Control problems where there is a mixture between continuous
states and discrete state variables.

Continuous states: position, velocity, temperature, pressure

Discrete states: on/off variables, controller modes, loss of
actuators, loss of sensors, relays, etc

Discontinuous differential equations

Much active field, much left to understand

Example of hybrid control

Control law that switches between different modes, e.g.

between

» Time optimal control — during large set point changes

» Linear control — close to set point

Aircraft Example
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(Branicky, 1993)




Phase Plane
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No common quadratic Lyapunov function exists.
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Bounds from piecewise quadratic Lyapunov function:

Number of Cells | Lower bound | Upper bound
4 0.60 2.50
8 1.33 2.18
16 1.65 1.98
32 1.78 1.88

Piecewise quadratic Lyapunov functions

_ [ x*Px if x1 <0
Vi) = { x*Px+nx2 ifx; >0

The matrix inequalities

AP+ PA,;

P

A5(P+nE'E)+ (P+nE*E)Ay
P+nE'E

ANV A
o o o o

\%

with E = [1 0], have the solution P = diag{1,3}, 7 ="17.

Observability

J)

/\
\ OV

ooy

%(8) = Ay x(?)
¥(8) = Ciyx(?)

Estimate [;° |y|2d¢ given x(0)

for x(t) € Xi(t) (1)

Adaptive Control/Predictive Control

( Ch. 8in Slotine and Li / examples in Khalil)
Adaptive Control/Predictive Control HT-Lp 1 (5p)

Many techniques from the nonlinear course are useful

Stability
Lyapunov theory
Passivity
Simulation

vV v vy

Take advantage of your knowledge and read this course!

Department of

Automatic Control

Master's Thesis

The Department aways has a number of suggestion for master thesis projects. We can also often help to establish contacts with
companies which are interested in master thesis projects, both in Sweden and abroad. The topics were we have thesis projects are
modeling and simulation, real-time systems, process control, automotive systems, robotics, and a large range of application areas
for control, automation, and real-time systems.

If you are interested in a master thesis with us you should contact Karl-Erik Arzén < Karl-Erik.Arzen@control.th.se> You can also
discuss with the teachers in the different control courses.

The aim and the rules for a Master's Thesis are described in LTH's rules for Master Theses. A Swedish information sheet is
available in pdf format.

 Ongoing projects in chronological order
 Recently finished projects

Some examples of Swedish companies which recently have had thesis projects with are Volvo, ABE, Ericsson, Tetra Pak, Alfa Laval,
Astra Zeneca, AssiDomin Frévi, Dynasim, Haldex Traction, and TAC.

The Department has good international contacts and can help to arrange thesis projects in other countries. Some universities where
master thesis have been made recently are:

® University of Newcastle, Australia

o University of Melbourne, Australia

* Laboratoire d'automatique de Grenoble, France

o University of Coimbra, Potugal

o Suiss Federal Institute of Technology (EPF), Lausanne, Switzerland

o Imperial College, London, UK

 University of California, Berkeley, USA

o California Institute of Technology, USA (as a part of the SURE-program )

Some thesis projects have also been done at companies abroad. Recent examples are:

o ABB, Switzerland and Germany
« Daimler-Chrysler, Berlin

o ZF Lenksysteme, Germany

o General Electric Global Research, Munich

More Information

» Nijmeijer, van der Schaft, Nonlinear Dynamical Control
Systems, Springer Verlag. More theory about Lie-bracket
theory

» Vidyasagar, Nonlinear systems analysis, Prentice Hall

» Isidori, Nonlinear Control Systems, Springer Verlag




Last Lecture

» A quick scan through the material again. Questions.

Take the rest of the lecture to write down questions for me to
the last lecture.




