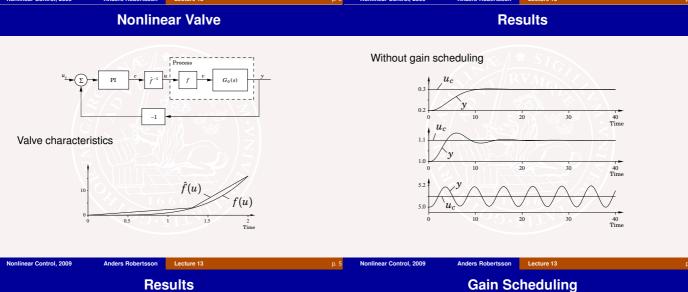
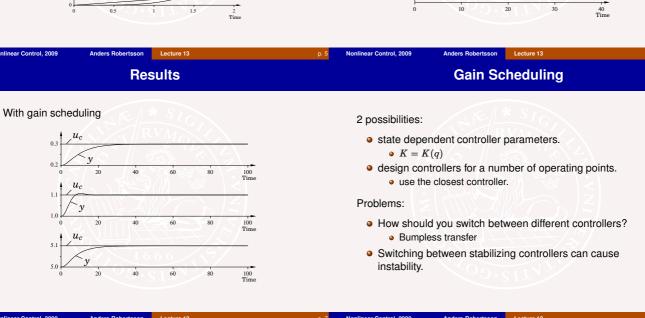
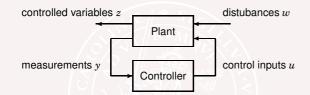
Nonlinear Control and Servo Systems Material Lecture 13 Lecture notes • Nonlinear control design methods cont'd Internal model, more info in e.g., Section 8.4 in [Glad&Ljung] Ch 12.1 in [Khalil] Today's Goal To be able to design controllers based on Gain scheduling Internal model control Model predictive control Nonlinear observers **Gain Scheduling Valve Characteristics** Example of scheduling variables Production rate Machine speed Mach number and dynamic pressure Compare structure with adaptive control! **Nonlinear Valve** Results Without gain scheduling Valve characteristics





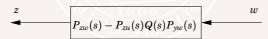
The *Q*-parametrization (Youla)

Internal Model Control

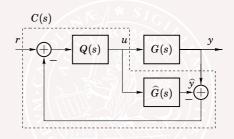


Basic Idea:

The choice of controller generally corresponds to finding Q(s), to get desirable properties of the map from w to z:



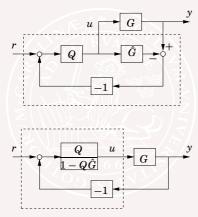
Once Q(s) is determined, a corresponding controller is found.



Feedback from model error $y - \hat{y}$.

Design: Choose $\widehat{G} \approx G$ and Q stable with $Q \approx G^{-1}$.

Two equivalent diagrams

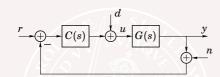


2 minute exercise: Show that the internal model controller can be written as

$$u = C(r - y) = (1 - Q\widehat{G})^{-1}Q(r - y)$$

Sensitivity S and Complementary Sensitivity T

Stable Q and G Gives Stable Closed-Loop System



$$S = (1 + GC)^{-1}$$

$$S = (1 + GC)^{-1}, T = (1 + GC)^{-1}GC,$$

$$S + T = 1$$

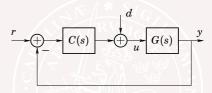
Assume $\widehat{G} = G$. The controller $C = (1 - QG)^{-1}Q$ gives

$$\begin{split} S^{-1} &= 1 + G(1 - QG)^{-1}Q = 1 + GQ(1 - GQ)^{-1} \\ &= [(1 - GQ) + GQ](1 - GQ)^{-1} = (1 - GQ)^{-1} \end{split}$$

$$S = 1 - GQ$$

$$S = 1 - GQ$$
 and $T = GQ$

Perfect control if $Q = G^{-1}$. Seldom possible!



Assume G stable and $\widehat{G}=G$. The closed-loop system is

$$\begin{pmatrix} y \\ u \end{pmatrix} = \begin{pmatrix} T & SG \\ SC & S \end{pmatrix} \begin{pmatrix} r \\ d \end{pmatrix} = \begin{pmatrix} GQ & (1-GQ)G \\ Q & 1-GQ \end{pmatrix} \begin{pmatrix} r \\ d \end{pmatrix}$$

All elements are stable if Q is stable.

Sensitivity S and Complementary Sensitivity T

 $|S(i\omega)| \ll 1$ gives good disturbance rejection.

 $|T(i\omega)| \approx 1$ gives good reference response.

 $|T(i\omega)| \ll 1$ gives good noise rejection.

S+T=1 \Longrightarrow different trade-offs for different frequencies.

Choose Q stable and proper. $Q \approx G^{-1}$ gives $|S(i\omega)| \ll 1$ and $|T(i\omega)| \approx 1.$

Example

$$G(s) = \frac{1}{1 + sT_1}$$

Choose

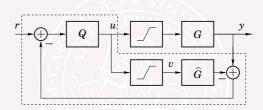
$$Q = \frac{1 + sT_1}{1 + \tau s}$$

Gives the PI controller

$$C = \frac{1+sT_1}{s\tau} = \frac{T_1}{\tau} \left(1 + \frac{1}{T_1 s}\right)$$

Anders Robertsson Lecture 13

- Unstable G
- $ullet Q
 otlpha G^{-1}$ due to RHP zeros
- Cancellation of process poles may show up in some



Include the nonlinearity in the model in the controller. Choose $Q \approx G^{-1}$.

Example (cont'd)

Assume r=0 and $\widehat{G}=G$.

$$u = -Q(y - \widehat{G}v) = -\frac{1 + sT_1}{1 + \tau s}y + \frac{1}{1 + \tau s}v$$

Same as above if $|u| \le u_{\text{max}}$: Integrating controller.

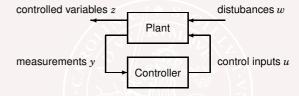
If $|u| > u_{\text{max}}$ then

$$u = -\frac{1 + sT_1}{1 + \tau s}y \pm \frac{u_{\text{max}}}{1 + \tau s}$$

No integration.

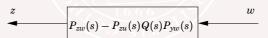
A way to implement anti-windup.

The Q-parametrization (Youla)



Basic Idea:

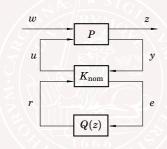
The choice of controller generally corresponds to finding Q(s), to get desirable properties of the map from w to z:



Once Q(s) is determined, a corresponding controller is found.

Youla parametrization revisited

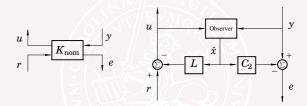
The Youla-parametrization:



where K_nom stabilizes the [P,K]-system and Q(z) = is any stable transfer function.

Nominal Controller

Linear system with observer



In equations

$$\begin{split} \dot{\hat{x}} &= A\hat{x} + Bu(k) + Ke(k) \\ u &= r - L\hat{x} \\ e &= y - C\hat{x} \end{split}$$

Model Predictive Control – MPC

- Derive the future controls u(t+j), $j=0,1,\ldots,N-1$ that give an optimal predicted response.
- ② Apply the first control u(t).
- Start over from 1 at next sample.

What is Optimal?

Minimize a cost function, V, of inputs and predicted outputs.

$$V = V(U_t, Y_t), \quad U_t = egin{bmatrix} u(t+N-1) \ dots \ u(t) \end{bmatrix}, \quad Y_t = egin{bmatrix} \widehat{y}(t+M|t) \ dots \ \widehat{y}(t+1|t) \end{bmatrix}$$

V often quadratic

$$V(U_t, Y_t) = Y_t^T Q_y Y_t + U_t^T Q_u U_t$$
(1)

⇒ linear controller

$$u(t) = -L\widehat{x}(t|t)$$

Anders Robertsson Lecti

- + Flexible method
 - Many types of models for prediction:
 - state space, input-output, step response, FIR filters
 - MIMO
 - * Time delays
- + Can include constraints on input signal and states
- + Can include future reference and disturbance information
- On-line optimization needed
- No stability (or performance) guarantees

Typical application: Chemical processes with slow sampling (minutes)

Discrete-time model

$$x(t+1) = Ax(t) + Bu(t) + B_v v_1(t)$$

 $y(t) = Cx(t) + v_2(t)$ $t = 0, 1, ...$

Predictor (v unknown)

$$\widehat{x}(t+k+1|t) = A\widehat{x}(t+k|t) + Bu(t+k)$$

$$\widehat{y}(t+k|t) = C\widehat{x}(t+k|t)$$

The M-step predictor for Linear Systems

 $\widehat{x}(t|t)$ is predicted by a standard Kalman filter, using outputs up to time t, and inputs up to time t-1.

Future predicted outputs are given by

$$\begin{bmatrix} \widehat{y}(t+M|t) \\ \vdots \\ \widehat{y}(t+1|t) \end{bmatrix} = \begin{bmatrix} CA^M \\ \vdots \\ CA \end{bmatrix} \widehat{x}(t|t) + \begin{bmatrix} CB & CAB & CA^2B & \dots \\ 0 & CB & CAB & \dots \\ \vdots & \ddots & \ddots & \vdots \end{bmatrix} \begin{bmatrix} u(t+M-1) \\ \vdots \\ u(t+N-1) \\ \vdots \\ u(t) \end{bmatrix}$$

$$Y_t = D_x \widehat{x}(t|t) + D_u U_t$$

2 minute exercise: Show that for a linear predictor, the quadratic cost function (1) can be written as

$$V(U_t) = U_t^T Q U_t + 2\widehat{x}(t|t)^T S U_t + \widehat{x}(t|t)^T R \widehat{x}(t|t)$$

This cost function is, for Q > 0, minimized by

$$U_t = -Q^{-1} S\widehat{x}(t|t)$$

and thus results in a constant linear controller.

Design Parameters

Limitations

 $|u(t)| \leq C_u \quad |y(t)| \leq C_y$

leads to quadratic optimization and linear matrix inequalities (LMIs).

• Local minimum = global minimum

Limitations on control signals and outputs,

Efficient optimization software exists.

- Model
- M (look on settling time)
- N as long as computational time allows
- If N < M-1 assumption on $u(t+N), \dots, u(t+M-1)$ needed (e.g., = 0, = u(t + N - 1).)
- Q_{v} , Q_{u} (trade-offs between control effort etc)
- C_v , C_u limitations often given
- Sampling time

Product: ABB Advant

Example-Motor

Example-Motor

$$A = \begin{pmatrix} 1 & 0.139 \\ 0 & 0.861 \end{pmatrix}, \quad B = \begin{pmatrix} 0.214 \\ 2.786 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \end{pmatrix}$$

Minimize
$$V(U_t)=\|Y_t-R\|$$
 where $R=egin{pmatrix} r\\ \vdots\\ r \end{pmatrix}$, r =reference, $M=8,\,N=2,\,u(t+2)=u(t+3)=u(t+7)=\ldots=0$

$$Y_t = \begin{pmatrix} CA^8 \\ \vdots \\ CA \end{pmatrix} x(t) + \begin{pmatrix} CA^6B & CA^7B \\ \vdots & \vdots \\ 0 & CB \end{pmatrix} \begin{pmatrix} u(t+1) \\ u(t) \end{pmatrix}$$
$$= D_x x(t) + D_u U_t$$

Solution without control constraints

$$U_t = -(D_u^T D_u)^{-1} D_u^T D_x x + (D_u^T D_u)^{-1} D_u^T R =$$

$$= -\begin{pmatrix} -2.50 & -0.18 \\ 2.77 & 0.51 \end{pmatrix} \begin{pmatrix} x_1(t) - r \\ x_2(t) \end{pmatrix}$$

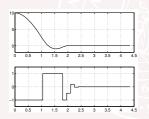
Use

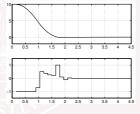
$$u(t) = -2.77(x_1(t) - r) - 0.51x_2(t)$$

Anders Robertsson Lecture 13

Example-Motor-Results

No control constraints in opti- Control constraints $|u(t)| \le 1$ in mization (but in simulation) optimization.





Nonlinear Observers

What if x is not measurable?

$$\dot{x} = f(x, u), \quad y = h(x)$$

Simplest observer (open loop - only works for as. stable

$$\hat{x} = f(\hat{x}, u)$$

Correction, as in linear case,

$$\dot{\widehat{x}} = f(\widehat{x}, u) + K(y - h(\widehat{x}))$$

Choices of K

- Linearize f at x_0 , find K for the linearization
- Linearize f at $\hat{x}(t)$, find K(t) for the linearization

Second case is called Extended Kalman Filter

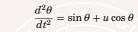
A Nonlinear Observer for the Pendulum

A Nonlinear Observer for the Pendulum

Control tasks:

- Swing up
- Catch
- Stabilize in upward position

The observer must to be valid for a complete revolution



$$x_1 = \theta, x_2 = \frac{d\theta}{dt} \Longrightarrow$$

$$\frac{dx_1}{dt} = x_2$$

$$\frac{dx_2}{dt} = \sin x_1 + u \cos x_1$$

Observer structure:

$$\frac{d\hat{x}_1}{dt} = \hat{x}_2 + k_1(x_1 - \hat{x}_1)$$

$$\frac{d\hat{x}_1}{dt} = \hat{x}_2 + k_1(x_1 - \hat{x}_1)
\frac{d\hat{x}_2}{dt} = \sin \hat{x}_1 + u \cos \hat{x}_1 + k_2(x_1 - \hat{x}_1)$$

A Nonlinear Observer for the Pendulum

Stability with Small Gain Theorem

Introduce the error $\tilde{x} = \hat{x} - x$

$$\begin{cases} \frac{d\tilde{x}_1}{dt} = -k_1\tilde{x}_1 + \tilde{x}_2\\ \frac{d\tilde{x}_2}{dt} = \sin\hat{x}_1 - \sin x_1 + u(\cos\hat{x}_1 - \cos x_1) - k_2\tilde{x}_1 \end{cases}$$

$$\frac{d}{dt} \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix} = \begin{bmatrix} -k_1 & 1 \\ -k_2 & 0 \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} v$$

$$v = 2\sin\frac{\tilde{x}_1}{2} \left(\cos\left(x_1 + \frac{\tilde{x}_1}{2}\right) - u\sin\left(x_1 + \frac{\tilde{x}_1}{2}\right)\right)$$

$$G(s)$$

The linear block:

$$\begin{split} G(s) &= \frac{1}{s^2 + k_1 s + k_2} \\ |\frac{1}{G(i\omega)}|^2 &= \omega^4 + (k_1^2 - 2k_2)\omega^2 + k_2^2 \\ &= (\omega^2 - k_2 + k_1^2/2)^2 - k_1^4/4 + k_1^2 k_2 \\ \gamma_G &= \max G(i\omega) = \begin{cases} \frac{1}{\sqrt{k_1^2 k_2 - k_1^4/4}}, & \text{if } k_1^2 < 2k_2 \\ \frac{1}{k_2}, & \text{if } k_1^2 \ge 2k_2 \end{cases} \end{split}$$

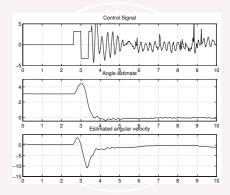
Stability with Small Gain Theorem

$$\begin{aligned} v &= 2\sin\frac{\tilde{x}_1}{2} \left(\cos\left(x_1 + \frac{\tilde{x}_1}{2}\right) - u\sin\left(x_1 + \frac{\tilde{x}_1}{2}\right)\right) \\ |v| &\leq |\tilde{x}_1| \sqrt{1 + u_{max}^2} = \beta |\tilde{x}_1| \end{aligned}$$

The observer is stable if $\gamma_G \beta < 1$

$$\implies \qquad k_2 > \begin{cases} \beta^2 k_1^{-2} + k_1^2/4, & \text{if } k_1 < \sqrt{2\beta}, \\ \beta, & \text{if } k_1 \geq \sqrt{2\beta} \end{cases}$$

A Nonlinear Observer for the Pendulum



Anders Robertsson Lecture 13

Next Lecture	
OYAT KVM PAKKA	
 High-gain design methods and sliding mode controllers 	
1666	
0.817	
Nonlinear Control, 2009 Anders Robertsson Lecture 13 p. 41	