Lecture 13

e Nonlinear control design methods cont'd

Today’s Goal

To be able to design controllers based on

@ Gain scheduling

@ Internal model control
@ Model predictive control
@ Nonlinear observers
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Gain Scheduling

Gain
schedule

Controller
parameters

Operating
condition

Command

Control
gLl ] signal
Controller

Example of scheduling variables

Output

@ Production rate
@ Machine speed
@ Mach number and dynamic pressure

Compare structure with adaptive control!
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Nonlinear Valve
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Results

With gain scheduling
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@ Lecture notes
@ Internal model, more info in e.g.,

o Section 8.4 in [Glad&Ljung]
e Ch 12.1in [Khalil]
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Valve Characteristics

Flow

Quick opening

Equal percentage

Position
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Results

Without gain scheduling
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Gain Scheduling

2 possibilities:
@ state dependent controller parameters.
° K =K(q)
@ design controllers for a number of operating points.
@ use the closest controller.

Problems:
@ How should you switch between different controllers?
o Bumpless transfer

@ Switching between stabilizing controllers can cause
instability.
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The @Q-parametrization (Youla) Internal Model Control

distubances w
7 N

controlled variables z
—Z <1

Plant
measurements y control inputs »
Controller

Basic Idea:
The choice of controller generally corresponds to finding Q(s),
to get desirable properties of the map from w to z:

-4 w
%Pzw(s) = qu(S)Q(S)wa(S)

Once Q(s) is determined, a corresponding controller is found.
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Two equivalent diagrams
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Sensitivity S and Complementary Sensitivity T’

S+T=1

T =(1+GC)'GC,
Assume G = G. The controller C = (1-QG)™1Q gives

S=(@1+aGc),

S1=1+G1-QG)'Q=1+G(1-GQ)™*
=[(1-G)+GQRI1-GQ) ' =(1-GQ)™"
S=1-GQ and T=GQ

Perfect control if @ = G~1. Seldom possible!
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i’ C@)4g1»0@> 2

|S(iw)| <« 1 gives good disturbance rejection.
|T'(iw)| ~ 1 gives good reference response.
|T'(iw)| < 1 gives good noise rejection.

S + T = 1 = different trade-offs for different frequencies.

IT(io)] ~ 1.

Nonlinear Control, 2009 Anders Robertsson Lecture 13

Sensitivity S and Complementary Sensitivity T’

Choose @ stable and proper. @ ~ G~! gives |S(iw)| < 1 and

p. 18]

p. 15

Feedback from model error y — .
Design: Choose G ~ G and @ stable with @ ~ G~1.
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2 minute exercise: Show that the internal model controller can
be written as

u=C(r—y) =(1-QG)'Q(r -y
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Stable @ and G Gives Stable Closed-Loop System

a C@»éhfcw -

Assume G stable and G = G. The closed-loop system is

()= (e 5) (&) = (@ “66°) ()

1-GQ d
All elements are stable if @ is stable.
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Example

1
G(s) = TrsTy

Choose 14 8T
— H

Q= 1+7s

Gives the PI controller

C=1+—STI=£<1+i)
ST T Tis
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Internal Model Control Can Give Problems Internal Model Control with Static Nonlinearity

@ Unstable G
@ @ # G~! due to RHP zeros

@ Cancellation of process poles may show up in some
signals

Include the nonlinearity in the model in the controller.
Choose @ ~ G~ 1.

Nonlinear Control, 2009 Anders Robertsson Lecture 13 . Nonlinear Control, 2009 Anders Robertsson Lecture 13
Example (cont’d) The @-parametrization (Youla)
Assume r — 0 and & = G. controlled variables z distubances w
Plant
2N 1+ ST1 1
=— —Gv) = —
“ QL v) 1+rsy+1+rsv
. . measurements y control inputs u

Same as above if |u| < umax: Integrating controller. Controller

If || > umax then

14sT) Umax Basic Idea:

The choice of controller generally corresponds to finding Q(s),

T 1+471s 1+7s ) .
to get desirable properties of the map from w to z:

No integration.

2 w
A way to implement anti-windup. “ Poiy(s) — Pau(s)Q(s) Py (s)

Once Q(s) is determined, a corresponding controller is found.
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Youla parametrization revisited Nominal Controller

The Youla-parametrization: LiEaty g ] 205
w z W
| P o ¢ [
a3} u y
u y B aess
— 7 e ka
I Knom I +
¥ tsrand |
r
r e
Q@)
[ In equations
% = A% + Bu(k) + Ke(k)
where K, om stabilizes the [P,K]-system and u=r—L%
Q(z) = is any stable transfer function. e=y—C#
Nonlinear Control, 2009 Anders Robertsson Lecture 13 . Nonlinear Control, 2009 Anders Robertsson Lecture 13 .
Model Predictive Control — MPC What is Optimal?
M : Minimize a cost function, V, of inputs and predicted outputs.
v :
e u(t+N-—1) J(E+ Mle)
pastoutput I ;d ) V = V(Ut, Yt), U, = : Y, =
| ‘ predicted outputy .
i ‘ : u(t) y(t + 1))
‘ V often quadratic
-1 , t+1 - (4N ¥ +M V(Ut,Yt) — YtTQth + UtTQu Ut (1)

= linear controller
@ Derive the future controls u(t + j), j=0,1,...,N—1
that give an optimal predicted response. u(t) = —Lx(t[t)
@ Apply the first control u(z).
@ Start over from 1 at next sample.
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Model Predictive Control A predictor for Linear Systems

+ Flexible method
* Many types of models for prediction:
@ state space, input—output, step response, FIR filters
* MIMO
* Time delays

Can include constraints on input signal and states

+ Can include future reference and disturbance information
On-line optimization needed

— No stability (or performance) guarantees

a

Typical application: Chemical processes with slow sampling
(minutes)
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The M -step predictor for Linear Systems

x(t|t) is predicted by a standard Kalman filter, using outputs up
to time ¢, and inputs up to time ¢ — 1.

Future predicted outputs are given by

u(t+M—1)
(it + M|t) caM CB CAB CA’B :
; =| : |z@p+| 0 CB CAB u(t+N—1)
3+ 1]t) CA 4 B ’ :
u(t)

Y, = D,&(t|t) + D, U,
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Limitations
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Discrete-time model

x(t + 1) = Ax(t) + Bu(t) + B,v1(t)

t=0,1,...
y(t) = Cx(t) + va(t)
Predictor (v unknown)

B(t+ b+ 1)t) = AZ(t + k|t) + Bu(t + )
5(t + k|t) = CZ(t + klt)
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2 minute exercise: Show that for a linear predictor, the
quadratic cost function (1) can be written as

V(U,) = UL QU; + 2z(t|t)T SU, + z(t|t)T RZ(t|t)
This cost function is, for @ > 0, minimized by
U, = —Q18%(tt)

and thus results in a constant linear controller.
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Design Parameters

Limitations on control signals and outputs,
@) <G |y <C,

leads to quadratic optimization and linear matrix inequalities
(LMIs).

@ Local minimum = global minimum

Efficient optimization software exists.
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Model

M (look on settling time)

N as long as computational time allows

If N <M —1assumptiononu(t+ N),...,u(t+M —1)
needed (e.g., =0, =u(¢t + N —1).)

9 Q,, @, (trade-offs between control effort etc)

@ C,, C, limitations often given

@ Sampling time

¢ © ¢ ¢

Product: ABB Advant
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Example—Motor

A= [1 0.139] . B= [0.214] ,

0 0.861 2.786
r
Minimize V(U;) = ||Y; — R|| where R = , r=reference,
r
M=8N=2u(t+2)=u(t+3)=u(t+7)=...=0
Nonlinear Control, 2009 Anders Robertsson Lecture 13 p. 31

Nonlinear Control, 2009 Lecture 13 p. 32

Example—Motor

CA® CASB CA'B
Y, = P (e + : :
CA 0 CB
= D,x(¢) + D, U,

R

Solution without control constraints

U,=—(DI'D,)'DI'D.x+ (DID,)'DIR =
_ (250 —0.18) (x(t)—r
- 277 051 xo(t)

u(t) = —2.77(x1(¢) — r) — 0.51x2(t)

Use

Anders Robertsson



Example—Motor—Results Nonlinear Observers

No control constraints in opti- Control constraints |u(¢)|<1in
mization (but in simulation) optimization.
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A Nonlinear Observer for the Pendulum

Control tasks:
@ Swing up
Q Catch
© Stabilize in upward
position
The observer must to be valid
for a complete revolution
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A Nonlinear Observer for the Pendulum

Introduce the error = £ — x

dxq

—= = —k1X1 + KXo

dt

dip 4 X A L -
——= =sin&; — sinx; + u(cos £; — cos x1) — ko¥y

sl -k AR

% . X
(cos (21 + 51) —usin(x; + 51))

G(s)

o] B

v = 2sin
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Stability with Small Gain Theorem

v =2sin %(cos (21 + %) —usin(x; + %))
o] < [21]\/ 1 + ufax = Bl

The observer is stable if yg 8 < 1

_ N B2+ k2[4, if k1< /2B,
278 it k1 > /2B
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What if x is not measurable?

x = f(x,u), y=h(x)
Simplest observer (open loop — only works for as. stable
systems). /
x=f(x,u)

Correction, as in linear case,

Choices of K

@ Linearize f at xo, find K for the linearization
@ Linearize f at x(¢), find K (¢) for the linearization

Second case is called Extended Kalman Filter
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A Nonlinear Observer for the Pendulum

d%e

a2z = sin 6 + u cos 6

de
x1=9,x2=m=>

dx1 A

dr 2

dxg .

IR = sinxj + U COS X1

Observer structure:

dxy

=X ki(x1 — &
i 2 +k1(x1 — X1)
di
% = sin&; + ucos &1 +ko(x1 — %1)
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Stability with Small Gain Theorem

The linear block:
1
Sy s2 4+ k1s + ko

1
|G(iw) |2 = 0* + (k2 — 2k2) 0% + K2
= (0% — ko + E2/2)2 — k} /4 + K3y
— L ifk2 < 2k
Y6 = max G(lCU) = V kﬁkz_kg/‘l, .
= if k2 > 2ks
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A Nonlinear Observer for the Pendulum

Control Signal
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Anders Robertsson Lecture 13



Next Lecture

@ High-gain design methods and sliding mode controllers
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