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Optimal Control

Outline Lectures 10 and 11

• Introduction
• The rocket problem
• Optimal control problems
• The maximum principle
• A minimal time problem
• Numerical methods/Optimica
• Lab 3

with material from J. Åkesson, Dep of Automatic Control, LTH
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Goal

To be able to
solve simple optimal control problems by hand
design controllers

using the maximum principle

Rewrite a optimal control problem to "standard form" for
numerical solvers

Material

Lecture slides

References to Glad & Ljung’s Control Theory - Multivariable and Nonlinear Methods (Reglerteori -
Flervariabla och olinjära metoder), part of Chapter 18
Note! page refs to Swedish edition
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Optimal Control Problems

Idea: Formulate the design problem as optimization problem

+ Gives systematic design procedure

+ Can use on nonlinear problems

+ Can capture limitations etc as constraints

– Hard to find suitable criterium?!

– Can be hard to find the optimal controller

Solutions will often be of “bang-bang” character if control signal
is bounded, compare lecture 10 on sliding mode controllers.
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The beginning

John Bernoulli: The bracistochrone problem 1696

Let a particle slide along a frictionless curve. Find the
curve that takes the particle from A to B in shortest time

A

B

?�
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A

B

?�

x

y

dt =
ds

v
=

√

dx2 + dy2

v
=

√

1+ y′(x)2
√

2�y(x)
dx

Find y(x), with y(0) and y(1) given, that minimizes

J(y) =

∫ 1

0

√

1+ y′(x)2
√

2�y(x)
dx

Solved by John and James Bernoulli, Newton, l’Hospital
Euler: Isoperimetric problems

Example: The largest area covered by a curve of given
length is a circle [see also Dido/cow-skin/Carthage].
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Optimal Control

The space race (Sputnik 1957)

Putting satellites in orbit

Trajectory planning for interplanetary travel

Reentry into atmosphere

Minimum time problems

LaSalle’s bang-bang principle

Tsien optimal trajectories

The industrial labs

Pontryagin’s maximum principle, 1956

Dynamic programming, Bellman 1957

Vitalization of a classical field
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An example: Goddard’s Rocket Problem (1910)

How to send a rocket as high up in the air as possible?

h(t)

m(t)

where u = motor force, D(v,h) = air resistance, m = mass.

Constraints
0 ≤ u ≤ umax , m(t f ) ≥ m1

Criterium
Maximize h(t f ), t f given
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Goddard’s Problem

Can you guess the solution when D(v,h) = 0?

Much harder when D(v,h) ,= 0

Can be optimal to have low v when air resistance is high. Burn
fuel at higher level.

Took about 50 years before a complete solution was found.

Read more about Goddard at http://www.nasa.gov/centers/goddard/
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Optimal Control Problem. Constituents

Control signal u(t), 0 ≤ t ≤ t f

Criterium h(t f ).

Differential equations relating h(t f ) and u

Constraints on u

Constraints on x(0) and x(t f )

t f can be fixed or a free variable
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Preliminary: Static Optimization

Minimize �1(x,u), x ∈ Rn and u ∈ Rm subject to �2(x,u) = 0
(Assume x can be solved for in �2 given u)
Introduce the Hamiltonian

H(x,u,λ) = �1(x,u) + λT�2(x,u)

Consider variation of H

δ �1 = δ H =
�H

�x
δ x +

�H

�u
δu

where λ ∈ Rn are the adjoined variables.

Necessary conditions for local minimum

�H

�x
= 0

�H

�u
= 0

Note: Difference if constrained control!
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Example - static optimization

Minimize
�1(x1, x2) = x

2
1 + x

2
2

with the constraint that

�2(x1, x2) = x1 ⋅ x2 − 1 = 0

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
level curves x

2
+y

2
=x and constraint xy=1

 

 

x
2

x1

Plot with level curves for �1 = constant and the constraint �2 = 0,
repectively.
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Static Optimization cont’d

Solving the equations

�H

�x
=
��1
�x

+ λT
��2
�x

= 0[ λT = −
��1
�x

(
��2
�x

)−1

�H

�u
=
��1
�u

+ λT
��2
�u

= 0[
��1
�u

−
��1
�x

(
��2
�x

)−1 ��2
�u

= 0

This gives m equations to solve for u. Note that
��2
�x

must be

non-singular (which it should be if u determines x through �2).

Sufficient condition for local minimum

�2H

�u2
> 0
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Optimization with Dynamic Constraint

Optimal Control Problem

min
u
J = min

u

{

φ(x(t f )) +

∫ t f

t0

L(x,u) dt

}

subject to
ẋ = f (x,u), x(t0) = x0

Introduce Hamiltonian: H(x,u,λ) = L(x,u) + λT f (x,u)

J = φ(x(t f )) +

∫ t f

t0

[

L(x,u) + λT( f − ẋ)
]

dt

= φ(x(t f )) −
[

λT x
]t f

t0
+

∫ t f

t0

[

H + λ̇T x
]

dt

where the second equality is obtained from "integration by
parts".
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Optimization with Dynamic Constraint cont’d

Variation of J:

δ J =

[(
�φ

�x
− λT

)

δ x

]

t=t f

+

∫ t f

t0

[(
�H

�x
+ λ̇T

)

δ x +
�H

�u
δu

]

dt

Necessary conditions for local minimum (δ J = 0)

λ̇T = −
�H

�x
ẋT =

�H

�λ

�H

�u
= 0

λ(t f )
T =

�φ

�x

∣
∣
∣
∣
t=t f

x(t0) = x0

Adjoined, or co-state, variables, λ(t)

λ specified at t = t f and x at t = t0
Two Point Boundary Value Problem (TPBV)

For sufficiency �2H
�u2

≥ 0
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Look at some common problems in optimal control

Rewrite in "standard/canonical forms"
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Problem Formulation (1)

(Re-write your problem to the) Standard form (1):

Minimize

∫ t f

0

Traj.cost
︷ ︸︸ ︷

L(x(t),u(t)) dt+

Finalcost
︷ ︸︸ ︷

φ(x(t f ))

ẋ(t) = f (x(t),u(t))

u(t) ∈ U , 0 ≤ t ≤ t f , t f given

x(0) = x0

x(t) ∈ Rn, u(t) ∈ Rm

U control constraints

Here we have a fixed end-time t f . This will be relaxed later on.
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The Maximum Principle (18.2)

Introduce the Hamiltonian

H(x,u,λ) = L(x,u) + λT(t) f (x,u).

Suppose optimization problem (1) has a solution {u∗(t), x∗(t)}.
Then the optimal solution must satisfy

min
u∈U

H(x∗(t),u,λ(t)) = H(x∗(t),u∗(t),λ(t)), 0 ≤ t ≤ t f ,

where λ(t) solves the adjoint equation

dλ(t)/dt = −HTx (x
∗(t),u∗(t),λ(t)), with λ(t f ) = φTx (x

∗(t f ))

Notation

Hx =
�H

�x
=

(
�H

�x1

�H

�x2
. . .

)
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Remarks

Proof: If you are theoretically interested look at proof in [Glad &
Ljung].

The idea is simply to note that every change of u(t) from the
suggested optimal u∗(t) must lead to larger value of the
criterium. Then do clever Taylor expansions.

Should be called “minimum principle”

λ(t) are called the Lagrange multipliers or the adjoint

variables
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Remarks

The MP gives necessary conditions

A pair (u∗(⋅), x∗(⋅)) is called extremal the conditions in the MP
are satisfied. Many extremals can exist.

The maximum principle gives all possible candidates.

However, there might not exist a minimum!

Example

Min x(1), ẋ(t) = u(t) x(0) = 0, u(t) free

Why doesn’t there exist a minimum?
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Example–Boat in Stream

x1

x2

v(x2)

min − x1(T)
ẋ1 = v(x2) + u1
ẋ2 = u2
x1(0) = 0
x2(0) = 0
u21 + u

2
2 = 1

Speed of water v(x2) in x1 direction. Move maximum distance
in x1-direction in fixed time T

Assume v linear so that v′(x2) = 1
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Solution

Adjoint equation

λ̇ = −Hx = −[�H/�x1, �H/�x2]
T

where H = 0+ λT f =
[
λ1 λ2

]
[
f1
f2

]

= λ1(v(x2) + u1) + λ2u2

λ̇1 = 0, λ̇2 = −v
′(x2)λ1 = −λ1

with boundary conditions
λ1(T) = �φ/�x1px=x∗(t f ) = −1, λ2(T) = 0.

Gives λ1(t) = −1, λ2(t) = t− T

Control signal should solve

min
u2
1
+u2
2
=1

λ1(v(x2) + u1) + λ2u2
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Solution

Minimize λ1u1 + λ2u2 so that (u1,u2) has length 1

u1(t) = −
λ1(t)

√

λ21(t) + λ22(t)
, u2(t) = −

λ2(t)
√

λ21(t) + λ22(t)

u1(t) =
1

√

1+ (t− T)2
, u2(t) =

T − t
√

1+ (t− T)2

See fig 18.1 for plots

Remark: It can be shown that this optimal control problem has a minimum. Hence it must be the one we found,

since this was the only solution to MP
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5 min exercise

Solve the optimal control problem

min

∫ 1

0

u4dt+ x(1)

ẋ = −x + u

x(0) = 0
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Problem Formulation (2)

We can extend the problem formulation (1) with extra
conditions.

Possible additions (one or many of):

r end constraints

Ψ(t f , x(t f )) =





Ψ1(t f , x(t f ))
...

Ψr(t f , x(t f ))




= 0

t f free variable (i.e., not specified a priori)

time varying final penalty, φ(t f , x(t f ))
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Goddard’s Rocket Problem revisited

How to send a rocket as high up in the air as possible?

d

dt





v

h

m



 =






u− D

m
− �

v

−γ u






h

m

(v(0),h(0),m(0)) = (0, 0,m0), �,γ > 0
u motor force, D = D(v,h) air resistance

Constraints: 0 ≤ u ≤ umax and m(t f ) = m1 (empty)

Optimization criterion: maxu h(t f )
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Generalized form:

min
u:[0,t f ]→U

∫ t f

0

L(x(t),u(t)) dt+ φ(x(t f ))

ẋ(t) = f (x(t),u(t)), x(0) = x0

ψ (x(t f )) = 0

Note the diffences compared to standard form:

End time t f is free

Final state is constrained: ψ (x(t f )) = x3(t f ) −m1 = 0
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Solution to Goddard’s Problem

Goddard’s problem is on generalized form with

x = (v,h,m)T , L " 0, φ(x) = −x2, ψ (x) = x3 −m1

D(v,h) " 0:

Easy: let u(t) = umax until m(t) = m1
Burn fuel as fast as possible, because it costs energy to lift
it

D(v,h) ," 0:

Hard: e.g., it can be optimal to have low speed when air
resistance is high, in order to burn fuel at higher level

Took 50 years before a complete solution was presented
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The Maximum Principle–General Case (18.4)

Introduce the Hamiltonian

H(x,u,λ ,n0) = n0L(x,u) + λT(t) f (x,u)

Suppose optimization problem (2) has a solution u∗(t), x∗(t).
Then there is a vector function λ(t), a number n0 ≥ 0, and a
vector µ ∈ Rr so that [n0 µT ] ,= 0 and

min
u∈U

H(x∗(t),u,λ(t),n0) = H(x
∗(t),u∗(t),λ(t),n0), 0 ≤ t ≤ t f ,

where

λ̇(t) = −HTx (x
∗(t),u∗(t),λ(t),n0)

λ(t f ) = n0φ
T
x (x

∗(t f )) + ΨTx (t f , x
∗(t f ))µ
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Free end time t f

If the choice of t f is included in the optimization then there is an
extra constraint:

H(x∗(t f ),u
∗(t f ),λ(t f ),n0) = −n0φ t(t f , x

∗(t f ))−µTΨt(t f , x
∗(t f ))

Note that for the special case where φ and Ψ are time-invariant
this reduces to

H(x∗(t f ),u
∗(t f ),λ(t f ),n0) = 0
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Normal/abnormal cases

Can scale n0,µ,λ(t) by the same constant

Can reduce to two cases

n0 = 1 (normal)

n0 = 0 (abnormal)

As we saw before (18.2): fixed time t f and no end constraints
[ normal case
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Hamilton function is constant

H is constant along extremals (x∗,u∗)

Proof:

d

dt
H = Hx ẋ + Hλ λ̇ + Huu̇ = Hx f − f

THTx + 0 = 0
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Example: Optimal heating

T temperature, P heat effect

Ṫ = P − T

0 ≤ P ≤ Pmax

T(0) = 0, T(1) = 1

minimize

∫ t f=1

0

P(t) dt
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Solution

H = n0P+ λP − λT

Adjoint equation λ̇T = −HT = −
�H
�T

λ̇1 = λ1, λ1(1) = µ1

Solution
λ1(t) = µ1e

t−1

H = (n0 + µ1e
t−1)

︸ ︷︷ ︸

σ (t)

P − λTT
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Solution

P∗(t) =

{
0, σ (t) > 0
Pmax, σ (t) < 0

µ ≥ 0[ P(t) = 0

µ < 0 n0 = 0[ P(t) = Pmax

µ < 0, n0 = 1[ Switching solution

µ1 < 0 [ σ (t) decreasing

Hence

P∗(t) =

{
0, 0 ≤ t ≤ t1
Pmax , t1 < t ≤ 1
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Solution

T(t) =

{

0, 0 ≤ t ≤ t1
∫ 1

t1
e−(t−τ )Pmax dτ =

(
e−(t−1) − e−(t−t1)

)
Pmax , t1 < t ≤ 1

Time t1 is given by

T(1) =
(

1− e−(1−t1)
)

Pmax = 1

Has solution 0 ≤ t1 ≤ 1 if

Pmax ≥
1

1− e−1
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Second Variations

By expanding the criterion, J, to second order one can see that

δ 2J =
1

2
δ xTφ xx δ x +

1

2

∫ t f

t0




δ x
δu





T


Hxx Hxu
Hux Huu








δ x
δu



 dt

δ ẋ = fxδ x + fuδu

where J = J∗ + δ 2J + . . . is a Taylor expansion of the criterion
and δ x = x − x∗ and δu = u− u∗.

Treat this as a new optimization problem. Linear time-varying
system and quadratic criterion. Gives an optimal controller of
the form

u− u∗ = L(t)(x − x∗)
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Linear Quadratic Control

minimize xT(t f )QN x(t f ) +

∫ t f

0




x

u





T 


Q11 Q12
QT12 Q22








x

u





where
ẋ = Ax + Bu, y = Cx

Optimal solution if t f = ∞, QN = 0, all matrices constant, and
x measurable:

u = −Lx

where L = Q−122 (Q12 + B
TS) and S is the positive definite

solution to

SA+ ATS+ Q11 − (Q12 + SB)Q
−1
22 (Q12 + B

TS) = 0
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Robustness of LQ-controller

Always stabilizing

Loop gain L(sI − A+ BL)−1B lies outside the circle
ps+ 1p ≤ 1. Circle criteria says that the closed system is
stable even if control signal is changed to

u = −α (t)Lx

with α (t) ∈ [1/2,∞].

phase margin 60 degrees
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Robustness with Kalman filter - none:

If x is not measurable one must use a Kalman filter. Warning!
Still stability but all robustness can be lost!

[IEEE Trans. Automat. Contr., vol. 23, pp. 756–757, August 1978]
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Feedback or feed-forward?

Example:

dx

dt
= u, x(0) = 1

minimize J =

∫ ∞

0

(

x2 + u2
)

dt

(1)

Jmin = 1 is achieved for

u(t) = −e−t open loop (2)

or
u(t) = −x(t) closed loop (3)

(??) =[ stable system
(??) =[ asympt. stable system

Sensitivity for noise and disturbances differ!!
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Reference generation using optimal control

Note that the optimization problem makes no distinction
between open loop control u∗(t) and closed loop control
u∗(t, x). Feedback is needed to take care of disturbances and
model errors.

Idea: Use the optimal open loop solution u∗(t), x∗(t) as
reference values to a linear regulator that keeps the system
close to the wanted trajectory

Efficient for large setpoint changes.

Planned trajectory x∗

x − x∗
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Opt. Ref. Gen.

x∗ u∗

u y

Proc.

x̂

Obs.

Lin. Cont.

+

+ +

-

Take care of deviations with linear controller
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Example – The Milk Race

Move milk in minimum time without spilling!
[M. Grundelius – Methods for Control of Liquid Slosh]

[movie]

Nonlinear Control, 2009 Anders Rantzer Lecture 11, Optimal Control p. 43

Minimal Time Problem

NOTE! Common trick to rewrite criterion into “standard form"!!

minimize t f = minimize

∫ t f

0

1 dt

Control constraints
pu(t)p ≤ umaxi

No spilling
pCx(t)p ≤ h

Optimal controller has been found for the milk race

Minimal time problem for linear system ẋ = Ax + Bu, y = Cx
with control constraints pui(t)p ≤ umaxi . Often bang-bang control
as solution
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Results- milk race

Maximum slosh φmax = 0.63
Maximum acceleration = 10 m/s2

Time optimal acceleration profile

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−15

−10

−5

0

5

10

15
Acceleration

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1

−0.5

0

0.5

1
Slosh

Optimal time = 375 ms, industrial = 540ms

Nonlinear Control, 2009 Anders Rantzer Lecture 11, Optimal Control p. 45

Extra example—Minimum Time Control

Problem: Use bounded control, u ∈ [−1, 1], and bring the
states of the double integrator to the origin as fast as possible.

Free end-time t f

min
u:[0,t f ]→[−1,1]

t f = min
u:[0,t f ]→[−1,1]

∫ t f

0

1 dt

ẋ1(t) = x2(t)

ẋ2(t) = u(t)

ψ (x(t f )) = (x1(t f ), x2(t f ))
T = (0, 0)T
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Hamiltonian

H = n0L + λT f = n0 ⋅ 1+ [λ1 λ2]

[
x2
u

]

The optimal control is the control which minimizes

u∗(t) = arg min
u∈[−1,1]

H = arg min
u∈[−1,1]

n0 + λ1(t)x
∗
2(t) + λ2(t)u

=

{

1, λ2(t) < 0

−1, λ2(t) ≥ 0

This is called "bang-bang control".

Remark: Here "indep." of n0 which is usually NOT the case, see exercises.
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Adjoint equations λ̇1(t) = 0, λ̇2(t) = −λ1(t) gives

λ1(t) = c1, λ2(t) = c2 − c1t

Use λ(t f ) = −n0φ t(t f , x∗(t f )) − µTΨt(t f , x∗(t f )), and
H(x∗(t f ),u∗(t f ),λ(t f ),n0) = 0 to find c1 and c2.

—————————–
"Alternative":
With u(t) = ζ = ±1, we have

x1(t) = x1(0) + x2(0)t+ ζ t2/2

x2(t) = x2(0) + ζ t

Eliminating t gives curves (parabolas)

x1(t) ± x2(t)
2/2 = const

These define the switch curves, where the optimal control switch.

Remark: See also solution to exam March 8, 2005 for more details
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Combination of solution curves: Follow one parabola using
maximum or minimum control signal until you hit the switch
curve σ , switch to minimum/maximum control and then follow
that parabola to the origin.
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For a "feedforward solution" one can use

u =

{

1, λ2(t) < 0

−1, λ2(t) ≥ 0

(and thus only use a "time-driven" expression for λ2(t)) when to
switch. This expression needs to be calculated for each
different initial condition x(0) and is not robust to disturbances).

For a "feedback solution" we use the switch curves

x1(t) ± x2(t)
2/2 = 0

which is easy to apply for (robust) feedback.
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Numerical Methods for Optimal Control

Several packages exist, e.g.,

RIOTS, free software for Matlab
Optimica

Used in this weeks computer exercise
http://www.control.lth.se/user/johan.akesson/

http://www.control.lth.se/project/Langopt/

See extra hand-out

Also exists special software for e.g., robotics
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Numerical Methods for Optimal Control

Maximum principle gives so called two point boundary
problems: x(t0), λ(t f ) given. Can solve by “shooting method”:

Guess λ(t0)

Solve ODEs for x(t) and λ(t) forward in time

Determine how final conditions x(t f ) and λ(t f ) are
changed when λ(t0) changes

Iterate on λ(t0) until final conditions are ok

Local convergence only. Methods with better stability properties
exist. Gradient methods and second order methods exist
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Today’s Goal

You should be able to

Design controllers based on optimal control theory for
Standard form
Generalized form

Understand possibilities and limitations of optimal control
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