Nonlinear Control and Servo Systems

Lecture 5

o Input—output stability
or

“How to make a circle out of the point —1 + 0z, and different
ways to keep away from it ...”
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For what G(s) and £(:) is the closed-loop system stable?

» Lur'e and Postnikov’s problem (1944)

» Aizerman’s conjecture (1949) (False!)

» Kalman'’s conjecture (1957) (False!)

» Solution by Popov (1960) (Led to the Circle Criterion)

Norms

A norm || - || measures size.
A norm is a function from a space Q to R™, such that for all
x,y € Q

> |lx] >0 and |x|=0 ¢ x=0

>l 4yl < flxll + [yl

> |lax|| = |a| - ||x||, forallc € R

Examples
Euclidean norm: ||x|| = \/m
Max norm: ||x|| = max{|x1],..., x|}

Parseval’s Theorem

Theorem If x,y € Ly have the Fourier transforms
00 . 0 .
X (io) = / O p)dt,  Y(io) = / Oy (1) dt,
Jo Jo
then
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/ © T (O)x(t)dt
0

In particular,

Y'(iw)X (iw)dw.

00 1 (oo}
Il = [ lPae =52 [ X (io)Pdo.
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|lx]l2 < oo corresponds to bounded energy.

Today’s Goal

To understand

» signal norms
» system gain
» bounded input bounded output (BIBO) stability

To be able to analyze stability using

» the Small Gain Theorem,
» the Circle Criterion,
> Passivity

Material

» [G&L]:Ch1.5-1.6,12.3; [Khalil]: Ch5-7.1;
[S&L]: Ch.4.7-4.8
» lecture slides

Gain

Idea: Generalize static gain to nonlinear dynamical systems

The gain y of S should tell what is the largest amplification from
utoy

Here S can be a constant, a matrix, a linear time-invariant
system, etc

Question: How should we measure the size of u and y?

Signal Norms

A signal x(¢) is a function from R* to R.
A signal norm is a way to measure the size of x(¢).

Examples
2-norm (energy norm): ||x|le = 1/ fo* |x(¢)|2dt
Sup-norm: [|x]loc = sup,cg- | (2)|

The space of signals with ||x||2 < co is denoted Ls.

System Gain

A system S is a map between two signal spaces: y = S(u).

The gain of S is defined as  y(S) = sup ol _ sup IS @)ll2

wer, el wer, Il

Example The gain of a static gain y(¢) = au(t) is

ou o
(@) = sup 128l _ o lallul
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2 minute exercise: Show that y(S1S2) < 7(S1)7(Sz).
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Example—Gain of a Stable Linear System

Example—Gain of a Static Nonlinearity

|f@) < Klxf,  f(x") = Kx*

u(t) y(t)

13 = / 72 (u(t))dt < / K2u2(t)dt = K2|ul}
0 0
u(t) = x*, t € (0,00) gives equality =

Iyl
¥(f) = sup,e W =K

BIBO Stable

7@ A (GG
Gull2

G)=sup —— = sup |G(iw
7(6) = T, = LS, 160

Proof: Assume |G(iw)| < K for w € (0,00) and |G(iw*)| = K
for some w*. Parseval’s theorem gives
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= — Y(
bl = 57 | I¥G0)Pdo
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=, | G@o)P|U()Pdo < K?ul}

Equality by choosing u(¢) = sin w*t.

The Small Gain Theorem
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Sa -~

Theorem
Assume S; and Sy are BIBO stable. If

7(S1)r(S2) <1

then the closed-loop system from (r1,r2) to (e1, ez) is BIBO
stable.

Linear System with Static Nonlinear Feedback (1)

Ky
f)
y
G(S)=(Sfl)2 and OS%SK

7(G)=2and y(f) < K.
SGT gives that K € [0,1/2) implies BIBO stability.

I I 7(S)  sup 1212

ueL, llull2

Definition
S is bounded-input bounded-output (BIBO) stable if y(S) < co.

Example: If x = Ax is asymptotically stable then
G(s) = C(sI — A)~'B + D is BIBO stable.

“Proof” of the Small Gain Theorem

Existence of solution (e1, e2) for every (r1,r2) has to be verified
separately. Then

llexlle < lIrall2 + ¥ (S2)[lIr2ll2 + ¥ (S1)lleall2]
gives
lIrillz + 7 (S2)llr2ll2
1—7(S2)7(S1)

7(S2)7(S1) <1, |Ir1llz < 00, [Ir2llz < oo give [lerlz < co.
Similarly we get

llellz <

lIrellz + 7 (S1)lIrall2

lezlle < 4 (81)r (S2)

S0 also ey is bounded.

The Nyquist Theorem

GQ) <

&
.
|

Theorem

The closed loop system is stable iff the number of
counter-clockwise encirclements of —1 by G(Q) (note: @
increasing) equals the number of open loop unstable poles.



The Small Gain Theorem can be Conservative

Let f(y) = Ky for the previous system.

The Nyquist Theorem proves stability when K € [0, c0).
The Small Gain Theorem proves stability when K € [0,1/2).

The other cases

G: stable system

» 0 < k1 < kg: Stay outside circle
» 0 =k < kg: Stay to the right of the line Re s = —1/kq
» k1 < 0 < kg: Stay inside the circle

Other cases: Multiply f and G with —1.

G: Unstable system
To be able to guarantee stability, 2; and ks must have same
sign (otherwise unstable for £ = 0)

» 0 < k1 < ko: Encircle the circle p times counter-clockwise
(if @ increasing)

» k1 < kg < 0: Encircle the circle p times counter-clockwise
(if @ increasing)

Proof of the Circle Criterion

Letk = (k1 + k2)/2 and f(y) = f(y) — ky. Then

Lyapunov revisited

Original idea: “Energy is decreasing”

t=f(x), x(0)=x
V(x(T)) - V(x(0)) <0
(+some other conditions on V)

New idea: “Increase in stored energy < added energy”

= f(x,u), x(0) = x¢
y = h(x)
T
V(x(T)) - V(2(0)) < /0 o(y.u) dt ()

external power

The Circle Criterion
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(This case is for 0 < k1 < kg < c0. See next slide for more
cases)

Theorem Consider a feedback loop with y = Gu and
u = —f(y) +r. Assume G(s) is stable and that

)

0< kg <—= <k
y

If the Nyquist curve of G(s) does not intersect or encircle the
circle defined by the points —1/%; and —1/kg, then the
closed-loop system is BIBO stable from r to y.

Linear System with Static Nonlinear Feedback (2)

1
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The “circle” is defined by —1/k; = —co and —1/ke = —1/K.

minRe G(iw) = —1/4

so the Circle Criterion gives that if K € [0,4) the system is
BIBO stable.

Proof of the Circle Criterion (cont’d)

(=
V.
1
G(iw)
SGT gives stability for |G (iw)|R < 1 with G = G
9 y ! T1+kG

< 1 ‘ 1
|G(iw)| |G(iw)

+H

Transform this expression through z — 1/=.

Motivation

Will assume the external power has the form ¢(y,u) = yTu.
Only interested in BIBO behavior. Note that

3V > 0 with V(x(0)) = 0 and (1)
—

T
/ yTudt> 0
0

Motivated by this we make the following definition



Passive System

Definition The system S is passive from u to y if

T
/ yTudt > 0, foralluandall T >0
0

and strictly passive from u to y if there 3e > 0 such that

T
/ Yudt > e(lys+uf2), foralluandall T >0
0

2 minute exercise:

S

Ss

J— S—l

Passivity of Linear Systems

Theorem An asymptotically stable linear system G(s) is
passive if and only if

Re G(iw) > 0, Vo >0

It is strictly passive if and only if there exists ¢ > 0 such that

ReG(iw —¢) >0, VYo >0

Proof: See Slotine and Li p. 139 for the first part.
Example

1 . .
G(s) = st is passive and

strictly passive, 9
G(iw)

1 . . o
G(s) = - is passive but not N
strictly passive. e TR

The Passivity Theorem
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Theorem If S; is strictly passive and Ss is passive, then the

closed-loop system is BIBO stable from r to y.

A Useful Notation

Define the scalar product

T
(y,u)T=/0 yT(t)u(t)dt
Cauchy-Schwarz:

,wyr < |ylrlulr

where |y|z = /(y,y)r. Note that |y|o, = ||y[l2.

Feedback of Passive Systems is Passive

r1 €1 Y1
— S1 T
Y2 €z ro
Sy O~

If S; and Sy are passive, then the closed-loop system from
(r1,72) to (y1,2) is also passive.

Proof: ,ryr = (y1,ri)r + Y2, 7o)
= (y1,71 = y2)1 + (¥2, 72 + y1)1T
= (y1,en)r + (y2,e2)r = 0
Hence, (y,r)r > 0 if (y1,e1)r > 0 and (y2,e2)r >0

A Strictly Passive System Has Finite Gain

If S is strictly passive, then y(S) < .

Proof: Note that |||z = limz_,c |y|r.
2 2
(7 + lulr) < Goudr <yl - fulr < lylle - [lull

Hence, e|y|% < |lyll2 - llu|l2, so letting T' — oo gives

1
lI¥ll2 < E||u||2

Proof of the Passivity Theorem

S; strictly passive and S, passive give

e(ly1lz +le1ld) < G, en)r + (o, e2)r = (3,77

Therefore

[a—y

113 + (r1— y2, 71— yo)r < =y, )7

€
or )
13 + |y2lF — 22, ra)r + 713 < z(&', rr

Finally
) 1 1
lyl7 < 2(ye,ro)r + “nr< {2+ [ylr|r|T

Letting T' — oo gives ||y||lz < C||r||z and the result follows



Passivity Theorem is a “Small Phase Theorem”

Gain Adaptation—Closed-Loop System
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Simulation of Gain Adaptation

LetG(s)=H%+e,y:1,u=sint,9(0):0and7/*:1

Vs Ym

Storage Function and Passivity

Lemma: If there exists a storage function V for a system

X = f(x?u)’ y:h(x)

with x(0) = 0, then the system is passive.
Proof: Forall T > 0,

T
v uyr = /0 Y(Ou(t)dt > V(x(T)) = V(x(0)) = V (x(T)) > 0

Example—Gain Adaptation

Applications in channel estimation in telecommunication, noise
cancelling etc.

Process

a(s) =

S is passive (Exercise 4.12), so the closed-loop system is BIBO
stable if G(s) is strictly passive.

Storage Function

Consider the nonlinear control system
= f(x,u), y=h(x)
A storage function is a C! function V : R* — R such that

» V(0)=0 and V(x) >0, Vx#0
» V(x) <uTy, va,u

Remark:

» V(T) represents the stored energy in the system

T
s VD) < / YOu)dt+  V(x(0)
—— Jo ——
stored energy att =T

vT >0

stored energy att =0
absorbed energy

Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function
Lyapunov idea: “Energy is decreasing”

V<o
Passivity idea: “Increase in stored energy < Added energy”

VSuTy



Example KYP Lemma

Consider an asymptotically stable linear system
x=Ax+ Bu, y=Cx

Assume there exists positive definite symmetric matrices P, @
such that
ATP+PA=-@Q, and BTP=C

Consider V = 0.5x7 Px. Then
V =0.5(xTPx + xTPx) = 0557 (ATP + PA)x + uT BT Px
=—05:TQx+uly<uTy, x#0

and hence the system is strictly passive. This fact is part of the
Kalman-Yakubovich-Popov lemma.

Next Lecture

()

» Describing functions (analysis of oscillations)




