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Nonlinear Control and Servo System

Lecture 4, Lyapunov Stability

Dept. of Automatic Control
LTH, Lund University

Today’s Goal

To be able to

◮ prove local and global stability of an equilibrium point using

Lyapunov’s method

◮ show stability of a set (for example, a limit cycle) using La

Salle’s invariant set theorem.

Material

◮ Glad & Ljung Ch. 12.2

◮ Khalil Ch. 4.1-4.3

◮ Slotine and Li: Chapter 3 (not 3.5.2-3.5.3)

◮ Lecture notes

Alexandr Mihailovich Lyapunov (1857–1918)

Master thesis “On the stability of ellipsoidal forms of equilibrium

of rotating fluids,” St. Petersburg University, 1884.

Doctoral thesis “The general problem of the stability of motion,”

1892.

Main idea

Lyapunov formalized the idea:

If the total energy is dissipated, then the system must be stable.

Main benefit: By looking at how an energy-like function V (a so

called Lyapunov function) changes over time, we might

conclude that a system is stable or asymptotically stable

without solving the nonlinear differential equation.

Main question: How to find a Lyapunov function?

Examples

Start with a Lyapunov candidate V to measure e.g.,

◮ "size"1 of state and/or output error,

◮ "size" of deviation from true parameters,

◮ energy difference from desired equilibrium,

◮ weighted combination of above

◮ ...

Example of common choice in adaptive control

V =
1

2

(
e2 + γ aã

2 + γ bb̃
2
)

(here weighted sum of output error and parameter errors)

1Often a magnitude measure or (squared) norm like pep22, ...

Analysis: Check if V is decreasing with time

◮ Continuous time:
dV

dt
< 0

◮ Discrete time: V (k+ 1) − V (k) < 0

Synthesis: Choose e.g. control law and/or parameter update

law to satisfy V̇ ≤ 0

dV

dt
= eė+ γ aã ˙̃a+ γ bb̃

˙̃
b =

= x̃(−ax̃ − ãx̂ + b̃u) + γ aã ˙̃a+ γ bb̃
˙̃
b = ...

If a is constant and ã = a− â then ˙̃a = − ˙̂a.

Choose update law
dâ

dt
in a "good way" to influence

dV

dt
.

(more on this later...)

A Motivating Example

x

m mẍ = − bẋpẋp︸ ︷︷ ︸
damping

− k0x − k1x
3

︸ ︷︷ ︸
spring

b, k0, k1 > 0

Total energy = kinetic + pot. energy: V = mv2

2
+

∫ x
0
Fsprin� ds [

V (x, ẋ) = mẋ2/2+ k0x
2/2+ k1x

4/4 > 0, V (0, 0) = 0

d

dt
V (x, ẋ) = mẍẋ + k0xẋ + k1x

3 ẋ = {plug in systemdynamics 2}

= −bpẋp3 < 0, for ẋ ,= 0

What does this mean?

2Also referred to evaluate “along system trajectories”.
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Stability Definitions

An equilibrium point x = 0 of ẋ = f (x) is

locally stable, if for every R > 0 there exists r > 0, such that

qx(0)q < r [ qx(t)q < R, t ≥ 0

locally asymptotically stable, if locally stable and

qx(0)q < r [ lim
t→∞
x(t) = 0

globally asymptotically stable, if asymptotically stable for all

x(0) ∈ Rn.

Lyapunov Theorem for Local Stability

Theorem Let ẋ = f (x), f (0) = 0, and 0 ∈ Ω ⊂ Rn. Assume

that V : Ω → R is a C1 function. If

(1) V (0) = 0

(2) V (x) > 0, for all x ∈ Ω, x ,= 0

(3) d
dt
V (x) ≤ 0 along all trajectories of the system in Ω

then x = 0 is locally stable. Furthermore, if also

(4) d
dt
V (x) < 0 for all x ∈ Ω, x ,= 0

then x = 0 is locally asymptotically stable.

Lyapunov Functions (( Energy Functions)

A function V that fulfills (1)–(3) is called a Lyapunov function.

Condition (3) means that V is non-increasing along all

trajectories in Ω:

V̇ (x) =
d

dt
V (x) =

�V

�x
⋅ ẋ =

�V

�x
⋅ f (x) ≤ 0

where �V
�x =

h
�V
�x1

�V
�x2

... �V
�xn

i

level sets where V = const.

x1

x2

V

Conservation and Dissipation

Conservation of energy: V̇(x) = �V
�x f (x) = 0, i.e. the vector

field f (x) is everywhere orthogonal to the normal �V�x to the

level surface V (x) = c.

Example: Total energy of a lossless mechanical system or total

fluid in a closed system.

Dissipation of energy: V̇ (x) = �V
�x f (x) ≤ 0, i.e. the vector field

f (x) and the normal �V�x to the level surface V (x) = c make an

obtuse angle (Sw. “trubbig vinkel”).

Example: Total energy of a mechanical system with damping or

total fluid in a system that leaks.

Geometric interpretation

x(t)

f (x)
V (x)=constant

gradient �V
�x

Vector field points into sublevel sets

Trajectories can only go to lower values of V (x)

Boundedness:

For an trajectory x(t)

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ )dτ ≤ V (x(0))

which means that the whole trajectory lies in the set

{z p V (z) ≤ V (x(0))}

For stability it is thus important that the sublevel sets

{z p V (z) ≤ c)} are locally bounded.

2 min exercise—Pendulum

Show that the origin is locally stable for a mathematical

pendulum.

ẋ1 = x2, ẋ2 = −
�

{
sin x1

Use as a Lyapunov function candidate

V (x) = (1− cos x1)�{ + {
2x22/2
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Lyapunov Theorem for Global Asymptotic Stability

Theorem Let ẋ = f (x) and f (0) = 0.
If there exists a C

1 function V : Rn → R such that

(1) V (0) = 0

(2) V (x) > 0, for all x ,= 0

(3) V̇(x) < 0 for all x ,= 0

(4) V (x) → ∞ as qxq → ∞

then x = 0 is globally asymptotically stable.
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Radial Unboundedness is Necessary

If the condition V (x) → ∞ as qxq → ∞ is not fulfilled, then

global stability cannot be guaranteed.

Example Assume V (x) = x21/(1+ x
2
1) + x

2
2 is a Lyapunov

function for a system. Can have qxq → ∞ even if V̇(x) < 0.

Contour plot V (x) = C:
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Example [Khalil]:

ẋ1 =
−6x1

(1+ x21)
2
+ 2x2

ẋ2 =
−2(x1 + x2)

(1+ x21)
2

Somewhat Stronger Assumptions

Theorem: Let ẋ = f (x) and f (0) = 0. If there exists a C1

function V : Rn → R such that

(1) V (0) = 0

(2) V (x) > 0 for all x ,= 0

(3) V̇(x) ≤ −αV (x) for all x

(4) The sublevel sets {xpV (x) ≤ c} are bounded for all c ≥ 0

then x = 0 is globally exponentially stable.

Proof Idea

Assume x(t) ,= 0 ( otherwise we have x(τ ) = 0 for all τ > t).
Then

V̇ (x)

V (x)
≤ −α

Integrating from 0 to t gives

log V (x(t)) − log V (x(0) ≤ −α t [ V (x(t)) ≤ e−α tV (x(0))

Hence, V (x(t)) → 0, t→∞.

Using the properties of V it follows that x(t) → 0, t→∞.

Positive Definite Matrices

Definition: A matrix M is positive definite if xTMx > 0 for all

x ,= 0. It is positive semidefinite if xTMx ≥ 0 for all x.

Lemma:

◮ M = MT is positive definite Z[ λ i(M) > 0, ∀i

◮ M = MT is positive semidefinite Z[ λ i(M) ≥ 0, ∀i

Note that if M = MT is positive definite, then the Lyapunov

function candidate V (x) = xTMx fulfills V (0) = 0 and

V (x) > 0, ∀x ,= 0.

Positive Definite Matrices

A matrix M is positive definite if xTMx > 0 for all x ,= 0.
It is positive semidefinite if xTMx ≥ 0 for all x.

A symmetric matrix M = MT is positive definite if and only if its

eigenvalues λ i > 0. (semidefinite \ λ i ≥ 0)

Note that if M = MT is positive definite, then the Lyapunov

function candidate V (x) = xTMx fulfills V (0) = 0 and

V (x) > 0 for all x ,= 0.

More matrix results

A symmetric matrix M = MT satisfies the inequalities

λmin(M)qxq
2 ≤ xTMx ≤ λmax(M)qxq

2

(To show it, use the factorization M = UΛU ∗, where U is a

unitary matrix, qUxq = qxq, U ∗ is complex conjugate

transpose, and Λ = diag(λ1, . . . ,λn).)

For any matrix M one also has

qMxq ≤ λ
1/2
max(M

TM)qxq

Lyapunov Stability for Linear Systems

Linear system: ẋ = Ax

Lyapunov equation: Let Q be a positive definite symmetric

matrix and solve

PA+ ATP = −Q

with respect to the symmetric matrix P.

Lyapunov function: V (x) = xTPx, [

V̇(x) = xTPẋ + ẋTPx = xT(PA + ATP)x = −xTQx < 0

Global Asymptotic Stability: If P is positive definite, then the

Lyapunov Stability Theorem implies global asymptotic stability,

and hence the eigenvalues of A must satisfy Re λ k(A) < 0 for

all k

Converse Theorem for Linear Systems

If Re λ k(A) < 0, then for every symmetric positive definite Q

there exist a symmetric positive definite matrix P = such that

PA+ ATP = −Q

Proof: Choose P =
∫∞
0
eA
T tQeAtdt. Then

ATP+ PA =

∫ ∞

0

(
AT eA

T tQeAt + eA
T tQeAt

)
dt

0 =

∫ ∞

0

(
d

dt
eA
T tQeAt

)
dt =

[
eA
T tQeAt

]∞
0
= −Q
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Interpretation

Assume ẋ = Ax, x(0) = z. Then

∫ ∞

0

xT(t)Qx(t)dt = zT
(∫ ∞

0

eA
T tQeAtdt

)
z = zTPz

Thus v(z) is the cost-to-go from the point z (with no input) and

integral quadratic cost function with weighting matrix Q.

Lyapunov’s Linearization Method

Recall from Lecture 2:

Theorem Consider

ẋ = f (x)

Assume that x = 0 is an equilibrium point and that

ẋ = Ax + �(x)

is a linearization.

(1) If Re λ k(A) < 0 for all k, then x = 0 is locally

asymptotically stable.

(2) If there exists k such that λ k(A) > 0, then x = 0 is

unstable.

Proof of (1) in Lyapunov’s Linearization Method

Lyapunov function candidate V (x) = xTPx. V (0) = 0,
V (x) > 0 for x ,= 0, and

V̇(x) = xTP f (x) + f T (x)Px

= xTP[Ax + �(x)] + [xTA+ �T(x)]Px

= xT(PA + ATP)x + 2xTP�(x) = −xTQx + 2xTP�(x)

xTQx ≥ λmin(Q)qxq
2

and for all γ > 0 there exists r > 0 such that

q�(x)q < γ qxq, ∀qxq < r

Thus, choosing γ sufficiently small gives

V̇(x) ≤ −
(
λmin(Q) − 2γ λmax(P)

)
qxq2 < 0

LaSalle’s Theorem for Global Asymptotic Stability

Theorem: Let ẋ = f (x) and f (0) = 0. If there exists a C
1

function V : Rn → R such that

(1) V (0) = 0

(2) V (x) > 0 for all x ,= 0

(3) V̇(x) ≤ 0 for all x

(4) V (x) → ∞ as qxq → ∞

(5) The only solution of ẋ = f (x), V̇(x) = 0 is x(t) = 0 for all t

then x = 0 is globally asymptotically stable.

A Motivating Example (cont’d)

mẍ = −bẋpẋp − k0x − k1x
3

V (x) = (2mẋ2 + 2k0x
2 + k1x

4)/4 > 0, V (0, 0) = 0

V̇(x) = −bpẋp3

Assume that there is a trajectory with ẋ(t) = 0, x(t) ,= 0. Then

d

dt
ẋ(t) = −

k0

m
x(t) −

k1

m
x3(t) ,= 0,

which means that ẋ(t) can not stay constant.

Hence, x(t) = 0 is the only possible trajectory for which

V̇(x) = 0, and the LaSalle theorem gives global asymptotic

stability.

Invariant Sets

Definition: A set M is called invariant if for the system

ẋ = f (x),

x(0) ∈ M implies that x(t) ∈ M for all t ≥ 0.

x(0)

x(t)

M

Invariant Set Theorem

Theorem Let Ω ∈ Rn be a bounded and closed set that is

invariant with respect to

ẋ = f (x).

Let V : Rn → R be a radially unbounded C
1 function such that

V̇(x) ≤ 0 for x ∈ Ω. Let E be the set of points in Ω where

V̇(x) = 0. If M is the largest invariant set in E, then every

solution with x(0) ∈ Ω approaches M as t→∞ (proof on

p. 73)

Ω E M

V̇(x)
E M x

Note that V must not be a positive definite function in this case.

Example—Stable Limit Cycle

Show that M = {x : qxq = 1} is a asymptotically stable limit

cycle for (almost globally, except for starting at x=0):

ẋ1 = x1 − x2 − x1(x
2
1 + x

2
2)

ẋ2 = x1 + x2 − x2(x
2
1 + x

2
2)

Let V (x) = (x21 + x
2
2 − 1)

2.

dV

dt
= 2(x21 + x

2
2 − 1)

d

dt
(x21 + x

2
2 − 1)

= −2(x21 + x
2
2 − 1)

2(x21 + x
2
2) ≤ 0 for x ∈ Ω

Ω = {0 < qxq ≤ R} is invariant for R = 1.
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Example— Stable Limit Cycle

E = {x ∈ Ω : V̇(x) = 0} = {x : qxq = 1}

M = E is an invariant set, because

d

dt
V = −2(x21 + x

2
2 − 1)(x

2
1 + x

2
2) = 0 for x ∈ M

We have shown that M is a asymtotically stable limit cycle

(globally stable in R − {0})

A Motivating Example (revisited)

mẍ = −bẋpẋp − k0x − k1x
3

V (x, ẋ) = (2mẋ2 + 2k0x
2 + k1x

4)/4 > 0, V (0, 0) = 0

V̇(x, ẋ) = −bpẋp3 gives E = {(x, ẋ) : ẋ = 0}.

Assume there exists (x̄, ˙̄x) ∈ M such that x̄(t0) ,= 0. Then

m ¨̄x(t0) = −k0 x̄(t0) − k1 x̄
3(t0) ,= 0

so ˙̄x(t0+) ,= 0 so the trajectory will immediately leave M . A

contradiction to that M is invariant.

Hence, M = {(0, 0)} so the origin is asymptotically stable.

Adaptive Noise Cancellation by Lyapunov Design

u b
s+a

bb
s+ba

x

x̂

x̃+
−

ẋ + ax = bu

˙̂x + âx̂ = b̂u

Introduce x̃ = x − x̂, ã = a− â, b̃ = b− b̂.

Want to design adaptation law so that x̃→ 0

Let us try the Lyapunov function

V =
1

2
(x̃2 + γ aã

2 + γ bb̃
2)

V̇ = x̃ ˙̃x + γ aã ˙̃a+ γ bb̃
˙̃
b =

= x̃(−ax̃ − ãx̂ + b̃u) + γ aã ˙̃a+ γ bb̃
˙̃
b = −ax̃2

where the last equality follows if we choose

˙̃a = − ˙̂a =
1

γ a
x̃ x̂

˙̃
b = −

˙̂
b = −

1

γ b
x̃u

Invariant set: x̃ = 0.

This proves that x̃→ 0.

(The parameters ã and b̃ do not necessarily converge: u " 0.)

Demonstration if time permits

Results
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time [s]
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0
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time [s]

â

b̂

Estimation of parameters starts at t=10 s.

Results
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1
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3000

s+3000

Transfer Fcn

ahat

To Workspace4
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To Workspace3
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To Workspace2

x

To Workspace1
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To Workspace

Sum1

Sum

Step1
Step

Product3

Product2
Product1

Product

[t,u]

From 
Workspace

Clock
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Estimation of parameters starts at t=10 s.

Next Lecture

◮ Stability analysis using input-output (frequency) methods

http://www.math.spbu.ru/NDA2007/en/
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Russian Version

International Congress "Nonlinear Dynamical Analysis - 2007" 

dedicated to the 150th anniversary of Academician A.M.Lyapunov 

 

2007 June 4-8 
Russian Academy of Sciences 
Saint-Petersburg State University, Russia

Second Announcement

Preliminary registration form

Application for participation & Abstract 
Requirements

Registration fee

Congress Service: accomodation, visa support, 
transfer, cultural programme

 

Scientific Commitee of the Congress

chair: academician Yu.S.Osipov - (Moscow)

vice-chairs: prof. A.A.Fursenko - (Moscow), academician V.G Peshekhonov - (St.-Petersburg), prof.
L.A.Verbitskaya - (St.-Petersburg)

Members of the Scientific Committee

аcademician N.A Anfimov (Moscow) academician V.M.Matrosov (Moscow)

prof. P. Borne (France) prof. H. Mijagi (Japan)

academician V.V.Kozlov (Moscow) аcademician N.F.Morozov (St.-Petersburg

academician N.N.Krasovsky (Yekaterinburg) academician V.V.Rumyantsev (Moscow)

prof. V.Lakshmikantham (USA) prof. E.A.Tropp (St.-Petersburg)

prof. G.A.Leonov (St.-Petersburg) academician V.Ye. Fortov (Moscow),

prof. S.N.Mazurenko (Moscow), academician K.V.Frolov (Moscow).

 

International Program Committee (IPC)

Co-chairs: V.Lakshmikantham (USA), V.M.Matrosov (Russia). 
Vice-chair: V. A. Pliss (Russia).

Members: 
N.V.Azbelev (Russia), A.A.Ashimov (Kazakhstan), V V.Beletsky (Russia), P.Borne (France),
S.N.Vassiljev, V.G.Veretennikov (Russia), V.Vujicic (Yugoslavia), A.V.Karapetjan, D.M.Klimov,
V.V.Kozlov, R.I.Kozlov, V.B.Kolmanovsky (Russia), V.I.Korobov, V.A.Kuntsevich (Ukraine),
P.S.Krassilnikov, V.P.Legostayev, G.A.Leonov (Russia), S.Leela (USA), A.M.Lipanov,
A.M.Matveenko, I.V.Matrosov (Russia), H.Mijagi (Japan), N.F.Morozov, Yu.S.Osipov (Russia),
M.Pascal (France), V.V.Rumyantsev, I.A.Ryabinin (Russia), A.Ya.Savchenko (Ukraine),


