Nonlinear Control
Lecture 3

Dept. of Automatic Control
LTH, Lund University

Material

Today’s Goal

You should be able to

» sketch phase portraits for two-dimensional systems

» classify equilibria into nodes, focus, saddle points, and
center points.

» analyze limit cycles through Poincaré maps

First glipse of phase plane portraits: Consider the system

v

Glad and Ljung: Chapter 13

Slotine and Li: Chapter 2 (except the isocline method and
Section 2.6)

Khalil: Chapter 2.1-2.3
Lecture notes
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First glipse of phase plane portraits: Consider the system

xlzx%+x2

X9 = —x1 — X2

In the point (x1, x2) = (1, 2) the vector field is pointing in the
direction (12 + 2, —1 —2) =(3, —3).

Linear Time-Varying Systems (warning)

. 2
X1 =x7+x2

Xg = —X1 — X2

Flow-interpretation: To each point (x1, x2) in the plane there is
an associated flow-direction % = f(x1,%2)

Linear Systems Revival

Warning: Pointwise “Left Half-Plane eigenvalues” of A(t)
(i.e., time-varying systems) do NOT impose stability!!!

—1+acos’t 1—asintcost
Al = < —1—asintcost —1+asin®t >’ @>0
Pointwise eigenvalues are given by
a—2+vVa?—4
AR)=A= —s

which are in the LHP for 0 < < 2 (and here even constant).
However,

(a—1)t —t o3
e cost e 'sint
x(t) = ( —el@Digint etcost ) x(0),

which is an unbounded solution for & > 1.

d X1| _ X1
dt ch} =4 ch}
Analytic solution:  x(¢) = e4x(0).
If A is diagonalizable, then
At
A IS A [P

0

where vy,ve are the eigenvectors of A (Avy = Aqv; etc).

Matlab:
>> [V,Lambdal=eig(A)

Example: Two real negative eigenvalues

Given the eigenvalues 4; < 49 < 0, with corresponding
—~  ~~

faster slower

eigenvectors vy and vg, respectively.

A

Solution: x(£) = cieMtvy + coe??tvy

Fast eigenvalue/vector: x(t) ~ cie*tvy + couy for small ¢.
Moves along the fast eigenvector for small ¢

Slow eigenvalue/vector: x(t) ~ cge*2tuy for large t.
Moves along the slow eigenvector towards x = 0 for large ¢



Phase-Plane Analysis for Linear Systems

The location of the eigenvalues A(A) determines the
characteristics of the trajectories.

Six cases:
stable node unstable node saddle point
ImA;=0: A1,42<0 A1,A2>0 A1 <0< Ag
ImA; #0: Red; <0 Red; >0 Rel; =0
stable focus unstable focus center point
I I
= o =
—— — —f=
=t —= ——
Example—Unstable Focus
5C={6 _m]x, o,mw >0, 11,2=0'iia)
0 o
1 1] [estei® 0 117!
w0y =0 = |1 170 e |4 1] 50

In polar coordinates r = ,/x% + xg 6 = arctan x2/x1

(x1 =rcos@, xog =rsinf):

r=or

b=w

Example—Stable Node

11,
*=lo -2

(Ands) = (-1,-2) and [o1 vy] = [(1) _11}

v1 is the slow direction and vs is the fast.
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Phase-Plane Analysis for Nonlinear Systems

Close to equil. points “nonlinear system” ~ “linear system”.

Theorem Assume
%= f(x)
is linearized so that
%= Ax + g(x),
where g € C! and ||g(x)|| < ||x/|*** for some ¢ > 0.

If 2= Az has a focus, node, or saddle point, then & = f(x) has
the same type of equilibrium at the origin.

If the linearized system has a center, then the nonlinear system
has either a center or a focus.

Equilibrium Points for Linear Systems

stable node unstable node saddle point
ImA; =0: A1, A2 <0 A1, >0 A1 <0< Ay
ImA; #0: Rel; <0 Rek; >0 Rel; =0

stable focus unstable focus center point

Example- unstable focus cont'd

Aig=1=i Arg=03+i

Phase Flane

Phase Plane
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4 minute exercise:

Hint: For A1 = A9 = A there are two different cases: only one
linear independent eigenvector or all vectors are eigenvectors

How to Draw Phase Portraits

If done by hand then

. Find equilibria (also called singularities)

. Sketch local behavior around equilibria

. Sketch (i1, %2) for some other points. Use that Z—ﬁ; = %
. Try to find possible limit cycles

. Guess solutions

a A~ O NN =

Matlab: pptool6/pptool7, dfield6/dfield7, dee, ICTools,
etc.

PPTool and some other tools for Matlab is available on or via
http://www.control.lth.se/course/FRTNOS



Phase-Locked Loop

A PLL tracks phase 6in(¢) of a signal sin(t) = A sin[w¢ + 6in(2)].

Sin v “Oout”
Phase i
— Detector Filter VCO
Oin C el . K Bout 1 Bout
sin(’) 1+ sT s

Singularity Classification of Linearized System

Linearization gives the following characteristic equations:

n even:
MR+TA+KT 1 =0

K > (4T)"! gives stable focus
0 < K < (4T)~! gives stable node

n odd:
A4+TIA—KT =0

Saddle points for all K,T > 0

Summary

Phase-plane analysis limited to second-order systems
(sometimes it is possible for higher-order systems to fix some
states)

Many dynamical systems of order three and higher not fully
understood (chaotic behaviors etc.)

Periodic solution: Polar coordinates.

Let
x1=rcos@ = dx; =cosOdr —rsinfdbo
xg=rsinf® = dxe = sin 6dr + r cos 6d6
=
4 _1 rcos@ rsinf X1
9 ) r\ —sin@® cos@ o
Now
&1 =r(1—r%)cosf —rsin@
&g =r(1—r?)sind +rcos @
which gives
r=r(l1-— r2)
6=1

Only r = 1 is a stable equilibrium!

Singularity Analysis of PLL

Let xl(t) = Bout(t) and xg(t) = 9out(t)-
Assume K,T > 0 and 6i,(¢) = 6i, constant.

3231 = X9
9 =—T 'ag+ KT™! sin(6j, — x1)

Singularities are (i, + nz,0), since

x1=0=>2x9=0
%9 =0=sin(0;, —x1) =0=x; = O +n7

Phase-Plane for PLL

K =1/2, T = 1: Focus (2k7,0), saddle points ((2% + 1)7,0)

Fhaze Plane

Periodic Solutions: x(¢ + T') = x(¢)

Example of an asymptotically stable periodic solution:

X1 = X1 — X9 —xl(x% +x§)

K = X1 + X2 — w2 (%2 4 x2)

Phase Flane

A system has a periodic solution if for some T' > 0
x(t+T)=x(t), Vt>0

Note that a constant value for x(t) by convention not is regarded

as periodic.

» When does a periodic solution exist?

» When is it locally (asymptotically) stable? When is it
globally asymptotically stable?



Poincaré map (“Stroboscopic map”)

i = f(x), xeR”
¢:(q) is the solution starting in ¢ after time ¢.
¥ C R* !is a hyperplane transverse to ¢;.
The Poincaré map P: X — X is

P(q) = 9:(¢)(9), 7(q) is the first return time

0:(q)

Locally Stable Limit Cycles

Limit Cycles

The linearization of P around ¢* gives a matrix W = 2—5
o

(qe+1—q") =~ W(ar — q"),
if gy, is close to ¢*.

» If all |[4;(W)| < 1, then the corresponding limit cycle is
locally asymptotically stable.

> If |1;(W)| > 1, then the limit cycle is unstable.

Example—Stable Unit Circle

Rewrite (??) in polar coordinates:

r:': r(1—r?)

Choose X = {(r,0) : r > 0,0 = 27k}
The solution is

(pt(ro, 00) = ([1 + (raz - 1)6‘72t]71/2, t+ 9())

First return time from any point (ro, 8o) € X is 7(ro,600) = 27.

Example—The Hand Saw

Can we stabilize the inverted pendulum by vertical oscillations?

If a simple periodic orbit pass through ¢*, then P(q*) = ¢*.

Such an orbit is called a limit cycle.
q* is called a fixed point of P.

P(g*) =¢*

Does the iteration g1 = P(q) converge to ¢g*?

Linearization Around a Periodic Solution

The linearization of

x(t) = f(x(t))

around xo(t) = xo(t + T) is

() = A@)x()
A = A (xo(0)) = A+ )

P is the map from the solution at ¢ = 0 to ¢ = 7(g).

Example—Stable Unit Circle

The Poincaré map is
P(ro) = [L+ (rg® — 1)e 7712

ro = 1is afixed point.

The limit cycle that corresponds to r(¢) = 1 and 6(¢) = ¢ is
locally asymptotically stable, because

d
W= ) =[]

and

W] =

dP _
| =l <1

The Hand Saw—Poincaré Map

x1:x2

. 1 5 . .

xzzz g+ a®w®sinxg | sinx;
5(33(t)=£0

Choose X = {x3 = 27k}.



The Hand Saw-Poincaré Map

¢* =0and T = 27 /w. No explicit expression for P. It is,

however, easy to determine W numerically. Do two (or

preferably many more) different simulations with different,

small, initial conditions x(0) = y and x(0) = =.
Solve W through (least squares solution of)

T T =
[x( )’x(0)=y x( )’x(0)=z] w (y 2]
This gives for a = 1cm, £ = 17cm, @ = 180

137 0.035
W= [—3.86 0.630]

which has eigenvalues (1.047,0.955). Unstable.
W is stable for o > 183

The Hand Saw—Simulation

Simulation results give good agreement

0.5 w =183
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The Hand Saw—Stability Condition

Make the assumptions that
£>»>a and aw’®>g
Then some calculations show that the Poincaré map is stable at

g* = 0 when
V294
a

w >

a=1cmand{ =17 cm give ® > 182.6 rad/s (29 Hz).

Next Lecture

» Lyapunov methods for stability analysis

Lyapunov generalized the idea of: If the total energy is
dissipated along the trajectories (i.e the solution curves), the
system must be stable.

Benefit: Might conclude that a system is stable or
asymptotically stable without solving the nonlinear differential
equation.

Nonlinear control is a serious business... cheer up @
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