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Nonlinear Control

Lecture 3

Dept. of Automatic Control
LTH, Lund University

Today’s Goal

You should be able to

◮ sketch phase portraits for two-dimensional systems

◮ classify equilibria into nodes, focus, saddle points, and

center points.

◮ analyze limit cycles through Poincaré maps

Material

◮ Glad and Ljung: Chapter 13

◮ Slotine and Li: Chapter 2 (except the isocline method and

Section 2.6)

◮ Khalil: Chapter 2.1–2.3

◮ Lecture notes

First glipse of phase plane portraits: Consider the system

ẋ1 = x21 + x2
ẋ2 = −x1 − x2

x1 ’ = x1
2
 + x2

x2 ’ = − x1 − x2
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Flow-interpretation: To each point (x1, x2) in the plane there is

an associated flow-direction dx
dt
= f (x1, x2)

First glipse of phase plane portraits: Consider the system

ẋ1 = x21 + x2
ẋ2 = −x1 − x2

x1 ’ = x1
2
 + x2

x2 ’ = − x1 − x2
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In the point (x1, x2) = (1, 2) the vector field is pointing in the

direction (12 + 2, −1− 2) =(3, −3).

Linear Systems Revival

d

dt

[
x1
x2

]

= A
[
x1
x2

]

Analytic solution: x(t) = eAtx(0).
If A is diagonalizable, then

eAt = VeΛtV−1 =
[
v1 v2

]
[
eλ1t 0

0 eλ2t

]
[
v1 v2

]−1

where v1,v2 are the eigenvectors of A (Av1 = λ1v1 etc).

Matlab:

>> [V,Lambda]=eig(A)

Linear Time-Varying Systems (warning)

Warning: Pointwise “Left Half-Plane eigenvalues” of A(t)
(i.e., time-varying systems) do NOT impose stability!!!

A(t) =
(

−1+α cos2 t 1−α sin t cos t

−1−α sin t cos t −1+α sin2 t

)

, α > 0

Pointwise eigenvalues are given by

λ(t) = λ = α − 2±
√

α 2 − 4
2

which are in the LHP for 0 < α < 2 (and here even constant).

However,

x(t) =
(
e(α−1)t cos t e−t sin t
−e(α−1)t sin t e−t cos t

)

x(0),

which is an unbounded solution for α > 1.

Example: Two real negative eigenvalues

Given the eigenvalues λ1
︸︷︷︸

f aster

< λ2
︸︷︷︸

slower

< 0, with corresponding

eigenvectors v1 and v2, respectively.

Solution: x(t) = c1eλ1tv1 + c2eλ2tv2

Fast eigenvalue/vector: x(t) ( c1eλ1tv1 + c2v2 for small t.

Moves along the fast eigenvector for small t

Slow eigenvalue/vector: x(t) ( c2eλ2tv2 for large t.

Moves along the slow eigenvector towards x = 0 for large t
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Phase-Plane Analysis for Linear Systems

The location of the eigenvalues λ(A) determines the

characteristics of the trajectories.

Six cases:

stable node unstable node saddle point

Imλ i = 0 : λ1,λ2 < 0 λ1,λ2 > 0 λ1 < 0 < λ2

Imλ i ,= 0 : Reλ i < 0 Reλ i > 0 Reλ i = 0
stable focus unstable focus center point

x_1

x_2

Re

Im

Equilibrium Points for Linear Systems

stable node unstable node saddle point
Imλ i = 0 : λ1,λ2 < 0 λ1,λ2 > 0 λ1 < 0 < λ2

Imλ i ,= 0 : Reλ i < 0 Reλ i > 0 Reλ i = 0
stable focus unstable focus center point

Re λ

Im λ

x1

x2

Example—Unstable Focus

ẋ =
[
σ −ω
ω σ

]

x, σ ,ω > 0, λ1,2 = σ ± iω

x(t) = eAtx(0) =
[
1 1

−i i

] [
eσ teiω t 0

0 eσ te−iω t

] [
1 1

−i i

]−1
x(0)

In polar coordinates r =
√

x2
1
+ x2

2
, θ = arctan x2/x1

(x1 = r cosθ , x2 = r sinθ ):

ṙ = σ r

θ̇ = ω

Example- unstable focus cont’d

λ1,2 = 1± i λ1,2 = 0.3± i

Example—Stable Node

ẋ =
[
−1 1

0 −2

]

x

(λ1,λ2) = (−1,−2) and
[
v1 v2

]
=

[
1 −1
0 1

]

v1 is the slow direction and v2 is the fast.

4 minute exercise:

Hint: For λ1 = λ2 = λ there are two different cases: only one

linear independent eigenvector or all vectors are eigenvectors

Phase-Plane Analysis for Nonlinear Systems

Close to equil. points “nonlinear system” ( “linear system”.

Theorem Assume

ẋ = f (x)
is linearized so that

ẋ = Ax + �(x),
where � ∈ C1 and q�(x)q < qxq1+ǫ for some ǫ > 0.
If ż = Az has a focus, node, or saddle point, then ẋ = f (x) has

the same type of equilibrium at the origin.

If the linearized system has a center, then the nonlinear system

has either a center or a focus.

How to Draw Phase Portraits

If done by hand then

1. Find equilibria (also called singularities)

2. Sketch local behavior around equilibria

3. Sketch (ẋ1, ẋ2) for some other points. Use that dx1
dx2

= ẋ1
ẋ2

.

4. Try to find possible limit cycles

5. Guess solutions

Matlab: pptool6/pptool7, dfield6/dfield7, dee, ICTools,

etc.

PPTool and some other tools for Matlab is available on or via

http://www.control.lth.se/course/FRTN05
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Phase-Locked Loop

A PLL tracks phase θ in(t) of a signal sin(t) = A sin[ω t+ θ in(t)].

v

Phase
Detector Filter VCO

sin “θout”

sin(⋅)
−

e K

1+ sT
1

s

θ in θoutθ̇out

Singularity Analysis of PLL

Let x1(t) = θout(t) and x2(t) = θ̇out(t).
Assume K ,T > 0 and θ in(t) = θ in constant.

ẋ1 = x2
ẋ2 = −T−1x2 + KT−1 sin(θ in − x1)

Singularities are (θ in + nπ , 0), since

ẋ1 = 0[ x2 = 0
ẋ2 = 0[ sin(θ in − x1) = 0[ x1 = θ in + nπ

Singularity Classification of Linearized System

Linearization gives the following characteristic equations:

n even:

λ2 + T−1λ + KT−1 = 0
K > (4T)−1 gives stable focus

0 < K < (4T)−1 gives stable node

n odd:

λ2 + T−1λ − KT−1 = 0
Saddle points for all K ,T > 0

Phase-Plane for PLL

K = 1/2, T = 1: Focus
(
2kπ , 0

)
, saddle points

(
(2k+ 1)π , 0

)

Summary

Phase-plane analysis limited to second-order systems

(sometimes it is possible for higher-order systems to fix some

states)

Many dynamical systems of order three and higher not fully

understood (chaotic behaviors etc.)

Periodic Solutions: x(t + T) = x(t)

Example of an asymptotically stable periodic solution:

ẋ1 = x1 − x2 − x1(x21 + x22)
ẋ2 = x1 + x2 − x2(x21 + x22)

(1)

Periodic solution: Polar coordinates.

Let
x1 = r cosθ [ dx1 = cosθdr − r sinθdθ

x2 = r sinθ [ dx2 = sinθdr + r cosθdθ

[ (
ṙ

θ̇

)

= 1
r

(
r cosθ r sinθ
− sinθ cosθ

) (
ẋ1
ẋ2

)

Now
ẋ1 = r(1− r2) cosθ − r sinθ

ẋ2 = r(1− r2) sinθ + r cosθ

which gives

ṙ = r(1− r2)
θ̇ = 1

Only r = 1 is a stable equilibrium!

A system has a periodic solution if for some T > 0

x(t+ T) = x(t), ∀t ≥ 0

Note that a constant value for x(t) by convention not is regarded

as periodic.

◮ When does a periodic solution exist?

◮ When is it locally (asymptotically) stable? When is it

globally asymptotically stable?
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Poincaré map (“Stroboscopic map”)

ẋ = f (x), x ∈ Rn

ϕ t(q) is the solution starting in q after time t.

Σ ⊂ Rn−1 is a hyperplane transverse to ϕ t.

The Poincaré map P : Σ → Σ is

P(q) = ϕτ (q)(q), τ (q) is the first return time

q ϕ t(q)

Σ

P(q)

Limit Cycles

If a simple periodic orbit pass through q∗, then P(q∗) = q∗.

Such an orbit is called a limit cycle.

q∗ is called a fixed point of P.

P(q∗) = q∗

Does the iteration qk+1 = P(qk) converge to q∗?

Locally Stable Limit Cycles

The linearization of P around q∗ gives a matrix W = �P
�q

∣
∣
∣
q∗

so

(qk+1 − q∗) ( W(qk − q∗),

if qk is close to q∗.

◮ If all pλ i(W)p < 1, then the corresponding limit cycle is

locally asymptotically stable.

◮ If pλ i(W)p > 1, then the limit cycle is unstable.

Linearization Around a Periodic Solution

The linearization of

ẋ(t) = f (x(t))

around x0(t) = x0(t+ T) is

˙̃x(t) = A(t)x̃(t)

A(t) = � f
�x

(
x0(t)

)
= A(t+ T)

P is the map from the solution at t = 0 to t = τ (q).

Example—Stable Unit Circle

Rewrite (??) in polar coordinates:

ṙ = r(1− r2)
θ̇ = 1

Choose Σ = {(r,θ ) : r > 0,θ = 2π k}.
The solution is

ϕ t(r0,θ0) =
(

[1+ (r−20 − 1)e−2t]−1/2, t+ θ0

)

First return time from any point (r0,θ0) ∈ Σ is τ (r0,θ0) = 2π .

Example—Stable Unit Circle

The Poincaré map is

P(r0) = [1+ (r−20 − 1)e−2⋅2π ]−1/2

r0 = 1 is a fixed point.

The limit cycle that corresponds to r(t) = 1 and θ (t) = t is

locally asymptotically stable, because

W = dP
dr0

(1) =
[
e−4π

]

and

pWp =
∣
∣
∣
∣

dP

dr0
(1)

∣
∣
∣
∣
= pe−4π p < 1

Example—The Hand Saw

Can we stabilize the inverted pendulum by vertical oscillations?

The Hand Saw—Poincaré Map

ẋ1 = x2

ẋ2 =
1

{

(

� + aω 2 sin x3
)

sin x1

ẋ3(t) = ω

Choose Σ = {x3 = 2π k}.

Σ
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The Hand Saw–Poincaré Map

q∗ = 0 and T = 2π /ω . No explicit expression for P. It is,

however, easy to determine W numerically. Do two (or

preferably many more) different simulations with different,

small, initial conditions x(0) = y and x(0) = z.
Solve W through (least squares solution of)



x(T)
∣
∣
∣
x(0)=y

x(T)
∣
∣
∣
x(0)=z



 = W


y z




This gives for a = 1cm, { = 17cm, ω = 180

W =



1.37 0.035

−3.86 0.630





which has eigenvalues (1.047, 0.955). Unstable.

W is stable for ω > 183

The Hand Saw—Stability Condition

Make the assumptions that

{ ≫ a and aω 2 ≫ �

Then some calculations show that the Poincaré map is stable at

q∗ = 0 when

ω >
√
2�{
a

a = 1 cm and { = 17 cm give ω > 182.6 rad/s (29 Hz).

The Hand Saw—Simulation

Simulation results give good agreement
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Next Lecture

◮ Lyapunov methods for stability analysis

Lyapunov generalized the idea of: If the total energy is

dissipated along the trajectories (i.e the solution curves), the

system must be stable.

Benefit: Might conclude that a system is stable or

asymptotically stable without solving the nonlinear differential

equation.

Nonlinear control is a serious business... cheer up

Lab 1


