Lecture 2

e Linearization
o Stability definitions

o Simulation in Matlab/Simulink

Material

» Glad& Ljung Ch. 11, 12.1,
( Khalil Ch 2.3, part of 4.1, and 4.3 )
(Slotine and Li, pp 40-57)

» Lecture slides

Example - Linearization around equilibrium point

Today’s Goal

The linearization of
() = %Sinx(t)
around the equilibrium xo = nx is given by

i) = % sin(n7 + £(t)) ~ %(_1)%@)

Hint: sin(a + B) = sin(a) cos(B) + sin(B) cos(xr)

2 minute exercise: Linearize
i+a® - —x=u
around the solution

xo(t) = ¢, uo(t) = &% — e

Hint: First check if (xo, uo) is a solution. Then plug-in
x(t) = e + %(¢t), u(t) = ¥ — ¥ + (¢), expand the expressions,
and finally remove higher order terms (> 2) of & and @.

Linearization, cont’d

The linearization of the output equation

¥(8) = h(x(8),u(?))

around the nominal output yo () = h(xo(t),uo(2)) is given by

() — 30(2)) = C(&)(x(2) — x0(2)) + D (#) (w(t) —uo(2))

where (if dim y = dim x = dimu = 2)
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To be able to

» linearize, both around equilibria and trajectories,

» explain definitions of local and global stability,

» check local stability and local controllability at equilibria
» simulate in Simulink,

Linearization Around a Trajectory

Idea:
Make Taylor-expansion around a known solution {xo(¢),uo(¢)}

Neglect small terms (i.e., keep the linear terms, as these will locally
dominate over the higher order terms).

Let
dxo/dt = f(x0(¢),u0(t)) beaknown solution

How will a small deviation {&, 4} from this solution behave?

d(xo + %)

ST = flao(6) + #(0),uo(®) + (1)

xo(t) + %(t),uo(t) + a(2))

Linearization, explicit form

Consider x(¢) = f(x(¢),u(¢)) and assume xo = f(x0(2), uo(t))

The linearization around (xo(¢), uo(¢)) is given by

% (2(2) = x0(2)) = A(2) - (x(8) — x0(£)) + B(2) - (u(t) — uo(?))

where (if dim x = dimu = 2)

9 a
aw =% B %
0x |(x0,u0) Bch sz (%0(8);0(2))
of ofn  Of
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Linearization Around a Trajectory, cont.

Let (xo(t),uo(¢)) denote a solution to & = f(x,u) and consider
another solution (x(¢),u(t)) = (xo(t) + %(¢), wo(t) + @(¢)):

£(0) = £x0(8) + 20, u0(0) + (1)
= Flxo(t)uo(t)) + 2L (x0(8) uo()3()
)

+ 2 o), uo)a(0) + 015,

(20(2), uo(t

(%o(8) + £(2),uo(8) + a(2))



State-space form

Hence, for small (&, %), approximately
&(t) = A(xo(£), o (2))Z(£) + B (xo(t), uo(£))a(2)

where (if dim x = 2, dmu = 1)

(20 (),u0(t))

of 0f1}

Alxo(t),uo(0) = I (o), u0(0)) = [% %o
Ox;  Oxg

Auq

of o
B(xo(t),uo(t)) = 5(’“0(”’“0(”) = [67'21} (o () uo(t))

Note that A and B are time dependent! However, if we don’t

linearize around a trajectory but linearize around an equilibrium

point (xo(¢), uo(t)) = (x0,uo) then A and B are constant.

Example: Rocket

h(t) =v(?)
6(t) = —g + %o
AN m(t) = —u(t)
h(t) l
ho(2)
Letuo(t) = uo>0; xo(¢) = | vo(¢) |; mo(t) = mo— uot.
mo(?)

Linearization: #(¢) = |:

Definition: A norm function ||x|| : x € R — R satisfies the
following three properties:
> ||x|| = 0if and only if (iff) x =0, [|x|| > O otherwise.
> ||lax|| = a||x||, for any positive a and any signal vector x.
» (The triangle inequality) ||x + y|| < ||x|| + ||¥|

x+y

Definition: (Euclidean norm)

x| = (x% +x§ +...+x2)1/2

Asymptotic Stability

Definition The equilibrium x = 0 is locally asymptotically
stable (LAS) if it

1) is stable
2) there exists r > 0 so that if ||x(0)|| < r then

x(t) — 0ast — oo.

(PhD-exercise: Show that 1) does not follow from 2))

Linearization, cont'd

The linearization of the output equation
¥(t) = h(x(£),u(?))
around the nominal output yo(£) = h(xo(t), uo (%)) is given by
() = 30(2)) = C(£) (x(2) — x0(2)) + D () (w(t) — uo())

where (if dim y = dim x = 2, dimu = 1)
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Part II: Stability definitions

Local Stability

Consider & = f(x) where f(0) =0

Definition The equilibrium x = 0 is stable if, for any R > 0,
there exists r > 0, such that

=) <r = |lx@®)| <R, foralit>0

Otherwise the equilibrium point is unstable.

x(t

Global Asymptotic Stability

Definition The equilibrium is said to be globally
asymptotically stable (GAS) if it is LAS and for all x(0) one
has

x(t) > 0as ¢ — oo.



Part Ill: Check local stability and controllability

Example
The linearization of
%1 = —x7+x; +sin(xg)
Xg = cos(x2) - x? - 5x2

1 . -1 1
at xp = [0] gives A = [_3 _5]
Eigenvalues are given by the characteristic equation
O=detAI—A)=A+1)(A+5)+3

This gives A = {—2,—4}, which are both in the left half-plane,
hence the nonlinear systemis LAS around x.

5 minute exercise:
Is the ball and beam
gjc' = x¢% + gsing + 25—r¢

nonlinearly locally controllable around
¢ =¢ =x=x=0(with § as input)?

Remark: This is a bit bit more detailed model of the ball and beam than we
saw in Lecture 1.

However...

4nd now for the major limitation: The system works only in situations where the car can continugusly back up
inte a space - not for those tight spots Where you must inch your way inte a space by going back and forth,
wrestling with the wheel.

Unfortunately, such spots are quite cormmon in Japan, And that's precisely when you wish you had a smart car
that would graciously help you park,

For me, the parking systern also took some getting used to.

You can't turn the car too much before you start parking because the car will get confused and tell you to start
over. You must decisively glide straight into pre-parking position before the car will let you begin jiggling the
arrovs on the panel

When I tried the system in our tiny parking lot at home, the system kept flashing warnings on the screen that the
car was too close or too far from where | wanted to park.

Bosch 2008 (Automatic parking assistance)

» Multiple turns
» parking lot > car length + 80 cm

More parking in lecture 12

Lyapunov’s Linearization Method

Theorem Assume
%= f(x)
has the linearization
4 t) — = A(x(t) —
7 (x(t) = x0) = A(x(t) = x0)
around the equilibrium point xy and put

o (A) = maxRe(1(4))

> If ¢(A) < 0, then & = f(x) is LAS at xo,
> If ¢(A) > 0, then & = f(x) is unstable at xo,
» If ¢ (A) = 0, then no conclusion can be drawn.

(Proof in Lecture 4)

Local Controllability

Theorem Assume
= f(x,u)
has the linearization

@ (e(0) ~ x0) = Ax(2) — x0) + Bu(t) — wo)

around the equilibrium (xo,uo) then

» (A, B) controllable = f(x,u) nonlinear locally controllable

Here nonlinear locally controllable is defined as:

Forevery T >0 and € > 0 the set of states x(T) that can be
reached from x(0) = xo, by using controls satisfying
lu(t) — uo|| < €, contains a small ball around x,.
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Example

An inverted pendulum with vertically moving pivot point

. 1 .
9(t) = 7 (g +u(?))sin(¢(?)),
where u(¢) is acceleration, can be written as
32,‘1 = X2

1
Xg = 7 (g +u)sin(x1)



Example, cont.

The linearization around x; = x5 = 0,u = 0 is given by
X1 = X2

. g9
X9 = 7x1

It is not controllable, hence no conclusion can be drawn about
nonlinear controllability

However, simulations show that the system is stabilized by
u(t) = eo?sin(wt)

if @ is large enough !

We will come back to this example later.

Example (cont'd): Numerical iteration

Tep1 = f(xz)

to find fixed point

Simulink

7(x)

[ simulink Library Browser o [ |

Fle Edt View Help

D& 4w |

Continuous: simulink3/Continuous

B Simuink -
2] Continuous
2] Discrete
2] Functions & Tables ele
2] math
> matlab 3] Norlinear

3] signals & Systems

>> simulink &) sinks

Functions & Tables

Math

< 25] Subsystems NAA |

B COMA Reference Blockset %&\
B Communications Blackset ]
B D5P Elockset -
T Developer' kit for TLDSP i
19l Disls & Gauges Blockset A
W Fixed-Point Blockset By
W Fuzey Logic Tookox L3
8 votroa 0 slocset & e

Narlnear

Signals & Systems

Sinks

3
o> Souces

FReady A

Choose Simulation Parameters

([ Simuiation parameters: untitted [ .|
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Simutation time

Start fime: (0.0 Stop time: [50 ‘
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Max step size:  |auto Relative tolerance: |1e-3
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Output options

’V Fefine output - Fefine factor: 1 ‘
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Don't forget “Apply”

Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation
Zep1 = f(xr)
is asymptotically stable at x* if the linearization

5} . .
of has all eigenvaluesin |1| < 1
0x lx*

(that is, within the unit circle).

Part IV: Simulation

Often the only method

&= f(x)
» ACSL
» Simnon
» Simulink
F(x,x)=0
» Omsim
http://www.control.lth.se/~cace/omsim.html
» Dymola http://www.dynasim.se/
» Modelica
http://www.dynasim.se/Modelica/index.html
Special purpose
» Spice (electronics)
» EMTP (electromagnetic transients)
» Adams (mechanical systems)

Simulink, An Example

File -> New -> Model
Double click on Continuous
Transfer Fcn

Step (in Sources)

Scope (in Sinks)

Connect (mouse-left)
Simulation->Parameters

A 4

s+1

Step Transfer Fcn Scope

Save Results to Workspace

Clock

To Workspace1
: |
00 —_ y
s+1
Signal Transfer Fen To Workspace

Generator

Check “Save format” of output blocks (“Array” instead of “Structure”)
>> plot(t,y)

(or use “Structure” which also contains the time information.)



How To Get Better Accuracy

Modify Refine, Absolute and Relative Tolerances, Integration
method

Refine adds interpolation points:

Rt - 1 Rafno - 10

Submodels, Example: Water tanks

Equation for one water tank:
h = (u—q)/A
q = a\/2g\/7t

Corresponding Simulink model:

Make a subsystem and connect two water tanks in series.

Subsystem2 Out
Subsystem

Linearization in Simulink, cont.

Use the command linmod to find a linear approximation of the
system around an operating point:

>> [aa,bb,cc,dd]=1inmod(’flow’,x0,u0);

>> sys=ss(aa,bb,cc,dd);
>> bode(sys)

Computer exercise

Simulation of JAS 39 Gripen

profiter

X

Clock time

» Simulation
» Analysis of PIO using describing functions
» Improve design

Gvets

pitch angle

Use Scripts to Document Simulations

If the block-diagram is saved to stepmodel.mdl,
the following Script-file simstepmodel.m simulates the system:

open_system(’stepmodel’)
set_param(’stepmodel’,’RelTol’,’1e-3)
set_param(’stepmodel’,’AbsTol’,’1e-6")
set_param(’stepmodel’,’Refine’,’1’)
tic

sim(’ stepmodel’,6)

toc
subplot(2,1,1),plot(t,y),title(’y’)
subplot(2,1,2),plot(t,u),title(’u’

Linearization in Simulink

Use the command trim to find e.g., stationary points to a
system >> A=2.7e-3;a=7e-6,g=9.8;

>> Y, Example to find input u for desired states/output
>> [x0,u0,y0]=trim(’flow’,[0.1 0.1]’,[],0.1)
x0 =
0.1000
0.1000
u0 =
8.3996e-06
yo =
0.1000

Linearization in Simulink; Alternative

By right-clicking on a signal connector in a Simulink model you
can add “Linearization points” (inputs and/or outputs).

Start a “Control and Estimation Tool Manager” to get a linearized
model by

Tools -> Control Design ->Linear analysis ...

where you can set the operating points, export linearized model to
Workspace (Model-> Export to Workspace) and much more.

Today

v

Linearization, both around equilibria and trajectories,
» Definitions of local and global stability,

How to check local stability and local controllability at
equilibria

Simulation tool: Simulink,

v

v

Next Lecture

Phase plane analysis
Classification of equilibria

v

v



