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1. Introduction

This laboratory exercise addresses optimal control on a free swinging pen-

dulum that is attached to a cart. The laboration consists of three parts.

The first part is on time optimal control of the cart. The second and third

parts deal with time optimal control of the pendulum and cart together.

In all three parts, the task will be to move the cart along the track in as

short time as possible. The system should start and stop at rest and we

have limited control actuation.

Important! There are 5 assignments in the lab. Number 1, 2, 4 and

5 have home assignment parts, which you will have to do before the

lab.

The files you need for the lab can be downloaded from the Course home-

page. Start Matlab by typing matlab -nodesktop or just matlab in the

terminal and initialize the lab by running the script pend_init.m in Mat-

lab.

2. Modeling of a Pendulum on a Cart

2.1 System description

The system consists of a cart that is driven by a DC-motor and a free swing-

ing pendulum that is attached to the cart. The system will be controlled

by a cascaded controller, see Figure 1. The outer controllers, that will be

designed during the lab with different control objectives in mind, will use

the acceleration reference to the inner loop as its control signal. We will

use both feedback and feedforward control during the lab.
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Figure 1 Control achitechture

2.2 Nonlinear Model

The inner loop in Fig. 1 consists of a cascade of a current loop and a PI-

controlled velocity/acceleration loop. Without going into details the result-
ing cart dynamics can be modeled as a double integrator from acceleration

reference to cart position, that is

P =
1
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Are f
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We are intreseted in the velocity and the position of the cart. To create a

state space model of the cart we introduce position, p, as one state, and

velocity, ṗ, as the other state. If we introduce

x = (p ṗ)T

the state equation becomes

ẋ = Acx + Bcare f =


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are f (1)

A pendulum model is most easily obtained using Lagrange mechanics.
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Figure 2 The pendulum

The acceleration of the suspension point of the pendulum is equal to the

acceleration of the cart, p̈. This creates an oppositely directed force, Fx =
−mp̈, at the suspension point of the pendulum. This force acts along the
negative x-axis, see Figure 2. The potential energy, V , and the kinetic

energy, T , in the x-y coordinates is

V = m�yp , T =
1

2
m(ẋ2p + ẏ

2
p)

where xp and yp are the pendulum end point coordinates, m is the pendu-

lum mass and � is the gravitational acceleration. We introduce the gener-
alized coordinate θ , which is the pendulum angle, see Figure 2. Note that

we only need one generalized coordinate since the radius is constant and

equal to the length of the pendulum1, l. The relationsship between the

coordinate systems is

xp = rx(θ ) = −l sinθ

yp = ry(θ ) = −l cosθ

In the generalized coordinate, θ , the potential and kinetic energies become

V = −m�l cosθ and T =
1

2
ml2θ̇ 2

1For the cart-pendulum process in the lab exercise, the pendulum length, l, is 0.345m.
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The Lagrangian is L = T − V and the Lagrange equation is

d

dt

(

�L

�θ̇

)

−
�L

�θ
= (Fx 0) ⋅ (

�rx(θ )

�θ

�ry(θ )

�θ
)T

Calculation of the partial derivatives gives

d

dt
(ml2θ̇ ) +m�l sinθ = mp̈l cosθ

which results in the following pendulum equation

θ̈ = −
�

l
sinθ +

p̈

l
cosθ

The reaction forces from the pendulum to the cart is attenuated by the

inner controller. Thus an approximate model of the complete system dy-

namics is









θ̈

p̈








=









−�
l
sinθ + p̈

l
cosθ

are f








=









−�
l
sinθ +

are f
l
cosθ

are f








(2)

where p̈ in the first equation has been replaced by the control signal are f .

2.3 Linearized Model

The model of the cart dymanics is linear but the pendulum equation is

nonlinear. When linearizing the pendulum equation in the downward posi-

tion, around θ = 0, we get sinθ ( θ and cosθ ( 1. We introduce the state
vector

z = (p ṗ θ θ̇)T

Linearization of the full system dynamics, (2), results in the following state
space system

ż = Az+ Bare f =
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3. Control of the Pendulum on Cart

The first part of this laboartory will be on time optimal control of the cart.

The second part will address time optimal control of the cart and the pen-

dulum. The third part uses dedicated optimization software to create time

optimal control trajectories. To make it more interesting we will have addi-

tional constraints specified by areas where the end point of the pendulum

must not enter.
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3.1 Time-optimal Control (general case)

The linearized models will be used when calculating the time optimal con-

trol problems. To avoid infinite control signals, we need control signal lim-

itations. The problem becomes

minimize t f = minimize
∫ t f
0 1 dt

subject to: ẋ = Aox + Bou
pup ≤ umax
x(0) = x0
x(t f ) = xt f

where x is some arbitrary state vector and u is some control signal. The

Hamiltonian, H , becomes H = 1+λT(Aox+Bou). The Maximum Principle
states that if we have optimal trajectories u∗(t) and x∗(t) then

min
u
H(x(t),u(t),λ(t)) = H(x∗(t),u∗(t),λ(t))

where

λ̇ = −
�H

�x
= −ATo λ

Since the only term that is dependent on u in H is λT(t)Bou(t) = σ (t)u(t),
H is minimized by choosing

u∗(t) =

{

−umax , σ (t) > 0

umax , σ (t) < 0

Thus the time optimal controller is a bang-bang controller.

3.2 Time-optimal Control of the Cart

The model of the cart is found in (1) but is restated here for convenience.

ẋ = Acx + Bcare f =








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
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are f (4)

where x = (p ṗ)T . The problem we are dealing with in this part of the lab is
to move the cart along the track in as short time as possible. The cart should

start at rest at one point, p0, and stop at rest at the origin. The magnitude

of the control signal is limited to amax m/s
2. Mathematically this problem

can be formulated as the following minimum time optimization problem

minimize t f
subject to: ẋ = Acx + Bcare f
pare f p ≤ amax
x(0) = (p0 0)

T

x(t f ) = (0 0)
T
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ASSIGNMENT 1

Home assignment:

• Use the theory in Section 3.1 to decide the number of switches

in the optimal control trajectory for the cart. That is, decide how

many times σ (t) changes sign. Determine an expression for the
optimal a∗

re f . a
∗
re f starts with a positive value.

• The solution to state equation (4) is

x(t f ) = e
Act f x(0) +

∫ t f

0

eAc(t f−s)Bcare f ds (5)

where

eAct =









1 t

0 1









Set your calculated a∗
re f as control signal in (5) and calculate the

switching time, t1, and the final time, t f .

At the lab: Edit assignment1.m and run it to calculate the switching

times and the final time. Simulate the system using cart.mdl to verify

that the control objective is achieved.

Since we have two states it is interesting to regard the problem from a

geometric point of view. Set p1 = p and p2 = ṗ, for are f = amax we have

ṗ1 = p2, ṗ2 = amax

The time variable can be eliminated by forming dp2/dp1 = ṗ2/ṗ1. This
gives

dp2

dp1
=
amax

p2

Rearranging the terms and integrating gives

∫

dp1 =

∫

p2

amax
dp2

with the solution

p1 + C1 =
p22
2amax

(6)

When instead are f = −amax we get the solution

p1 + C2 = −
p22
2amax

(7)

Phase plane trajectories for some values of C1 and C2, when amax = 3m/s
2,

are plotted in Figure 3.
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Figure 3 Trajectories for are f = amax = 3m/s
2 and are f = −amax = −3m/s

2

ASSIGNMENT 2

Home assignment:

• The system should be controlled to the origin. Decide graphically

from Figure 3 the regions of the state space where amax and−amax
should be used respecively to achieve this. Draw the switching

curve between the two regions.

• Determine an equation f (p1, p2) = 0 that describes how p1 and p2
relate to each other on the switching curve. (Hint: First determine
the constants, C1 and C2, in (6) and (7). Then put the equations
together. To do this you will need to use sign(p2).)

• f (p1, p2) takes negative values for points on one side of the switch-
ing curve, and positive values for points on the other side. Deter-

mine which sides that gives positive and negative values respec-

tively. We want are f to be amax on one side of the swithcing curve

and −amax on the other. Derive an expression for are f . (Hint: Use
sign( f (p1, p2)).)

At the lab:

• Type your derived controller in the block for embedded matlab

code in cart.mdl. Switch controller and simulate the system to

see if the control objectives are achieved. Phase plane trajectories

are plotted by the script plot_cart_pp.m

• Try the two controllers on the real system. To do this you need

to change from “Simulation model” to “Real system” in cart.mdl.

The “Real system” is found in pend_lib.mdl. Which controller

performes best if the actual initial position is not p0?

3.3 Time-optimal Control of the Pendulum on Cart

The state space model for for the full system is found in (3), but is restated
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here for convenience.

ż = Az+ Bare f =
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
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where z = (p ṗ θ θ̇ )T . The control objective is the same as in the previous
section. That is to move the cart from one position on the track, p0, to an-

other position as fast as possible with limited control actuation. The system

should be at rest both at the starting point and the final point. This is a

time optimal control problem and from the introductory section we know

that the optimal control trajectory is of bang-bang type. Since we have four

states the optimal control trajectory should have three sign changes. That is

a∗
re f (t) =























amax , 0 ≤ t ≤ t1

−amax , t1 ≤ t ≤ t2

amax , t2 ≤ t ≤ t3

−amax , t3 ≤ t ≤ t f

The optimal switching times are calculated using (5) with appropriate sys-
tem matrices. We will need eAt to do this (Note:

√

�/l = ω ).

eAt =


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Insert this into (5) and we will get
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∫ t2

t1

(...)ds+
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(...)ds−

∫ t f
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(...)ds)

The primitive function is
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
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
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
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
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
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Insert this into (8) and we get


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


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

+ amax(−H(0) + 2H(t1) − 2H(t2) + 2H(t3) − H(t f )) (9)

The script assignment3.m caluculates t1, t2, t3 and t f that satisfies (9)
for chosen amax and p0. The optimal state and control trajectories that

result from applying the optimal control trajectory are called zopt and a
opt
re f

respectively.

ASSIGNMENT 3

• Choose amax and p0 in assignment3.m, and run the script.

Then simulate the system using cart_pend.mdl. Use the script

plot_pend.m to plot or animate the resulting pendulum move-

ments.

• Simulate again, but change initial values for the pendulum. The

initial values are changed in assignment3.m. Why are the control

objectives are not met?

Since the control objectives are not met we will introduce feedback. We

want the feedback to take care of when the actual state trajectories, z, de-

viates from their optimal trajectories, zopt. We also want to penalize when

the control signal, are f , deviates from the optimal one, a
opt
re f to get a smooth

controller. Since we have a maximum possible cart-acceleration of 7m/s2,
our control signal should stay within this limit,

∣

∣are f
∣

∣ ≤ 7. The track is
a bit more than 1 meter long. We want our controller to take care of this

limitaion as well. If we define our staring position, p0, to be 0.1 m from

the left end of the track we get that p+ p0 ≤ 0.9m and p+ p0 ≥ −0.1m
since p = 0 at p0. This kind of problem, with constraints, is perfectly suited
for an MPC-controller. In order to use MPC we need discrete time models

of the system behaviour around the optimal trajectory. To this end we lin-

earize the system around the optimal trajectory and discretize the result.

The resulting models are
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∆z(k+ 1) = Φ(k)∆z(k) + Γ(k)∆are f (k)

Φ(k) =
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
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


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ω k =

√

� cosθ opt(k)

l

bk =
cosθ opt(k)

l

where ∆z(k) = z(k) − zopt(k) and ∆are f (k) = are f (k) − a
opt
re f (k). It turns out

that the discretized models depend on the angle of the pendulum. Since we

know at which angle the pendulum should be at every time step, θ opt(k),
we use this angle in our linearized models. This is a good approximation,

if the actual pendulum angle, θ (k), is not too far away from the optimal,
θ opt(k).

Before we can state the optimization problem that the MPC-controller

should solve at each time step, we need to define some matrices

Z(k) =


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

z(k+ 1)

...

z(k+ N)


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
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
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
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




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


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









A
opt
re f (k) =






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













a
opt
re f
(k)

...

a
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(k+ N − 1)


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



∆Z(k) = Z(k) − Zopt(k) ∆Are f (k) = Are f (k) − A
opt
re f
(k)

In addition we also need a vector for the predicted positions, P(k) = block-
diag([1 0 0 0])Z(k). The block diagonal matrix picks every fourth element
of Z(k) since they contain the predicted positions of the cart. Equivalent
vectors are produced for the position deviations from the optimal positions,

∆P(k) and for the optimal positions, Popt(k). At each time step, k, the
MPC-controller should solve the following optimization problem

min
∆Are f (k)

∆Z(k)TQ∆Z(k) + ∆Are f (k)
TR∆Are f (k)

subject to: Are f (k) = ∆Are f (k) + A
opt
re f (k) ≤ 7

Are f (k) = ∆Are f (k) + A
opt
re f
(k) ≥ −7

P(k) = ∆P(k) + Popt(k) + p01 ≤ 0.1
P(k) = ∆P(k) + Popt(k) + p01 ≥ −0.9
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The Q- and the R-matrices are user chosen relative costs between the

different states and the control. The optimization problem is solved at every

time instant, k, and the control are f (k) = ∆are f (k) + a
opt
re f (k) is applied.

ASSIGNMENT 4

Home assignment: Try to understand how the Q and R-matrices

affects the control. Discuss how large and small values of R affect the

aggresiveness in the control signal. Also discuss how large and small

values of Q affect the corresponding state trajectory errors.

At the lab:

• Open assignment4.m and choose Q and R-matrices, for the MPC-

controller. Also choose sampling time, h, and cost horizon, N . The

prediction horizon of the MPC-controller is Nh. This should be

at least 0.7s to get good predictions of the pendulum behavior.

The computation time for the MPC-controller, found in the scope

execTime in the simulink-model, must less time than h/2s. Then
choose p0 and amax. Simulate the system with different initial

conditions on the pendulum. Recalibrate Q, R, h and N until you

are satisfied. Remember to examine the control signal as well as

the controlled signals since we have limited actuation. Use the

script plot_pend.m to plot or animate the resulting pendulum

movements. Edit the file to specify animation speed.

• When you are satisfied with your design, try your controller on

the real process. Run the system with and without the MPC feed-

back. Also run the system with different initial conditions on the

pendulum.

3.4 Optimization using Optimica

In this part we will use dedicated optimization software, namely Optimica,

Ampl and Ipopt, to solve an optimization problem. Optimica needs a model,

specified in a Modelica file, and an optimization file as inputs. These files

are merged to a large non-linear optimization problem by Optimica. The re-

sulting non-linear optimization problem is solved by Ampl/Ipopt. It should
be mentioned that Optimica is developed at this department.

The model for the non-linear pendulum on cart, (2), is specified in the
Modelica file pendulum.mo. The states in the model are the cart position,

which is p, the cart velocity, p_dot, the pendulum angle, theta and the

pendulum angle velocity, theta_dot. The model also contains varibles that

specify the x- and y-coordiantes of the pendulum end point, these are x_p

and y_p respectively.

Figure 4 shows how we want the pendulum to move. The pendulum should

start at rest at p = −0.8m. The goal is to reach p = 0m with the constraint
that the end point of the pendulum must not enter the ellipse. When at

p = 0 the pendulum should be at rest, meaning that all states should be
zero. This movement should be performed in as short time as possible.

The control signal, a_ref , is constrained to be between -5 and 5 m/s2, its
derivative, a_ref_dot, is constrained to be between -100 and 100 in the opti-
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mization. Since the track is limited we also need the cart position to satisfy

−0.9 ≤ p ≤ 0.1.

ASSIGNMENT 5

Home assignment: State the above specified optimization problem

mathematically.

At the lab:

• To initialize the optimization software, open a new terminal

window and type

> source optSetup

The script requires a password that the laboratory assis-

tant will give you. In the folder FRTN05Lab you will find the

optimization software and the optimization files you need. Open

the Optimica file pendulum.op and specify the constraints and the

cost function from the home assignment. The initial conditions

are given in the model file. Run

> optimicac pendulum.op pendulum.mo pendulum

initialGuess.txt

to transfer the optimization problem to a nonlinear optimization

problem in Ampl-format. The last argument to Optimica is an

initial guess to the solver. This is needed because the optimization

problem is rather tough and some “guidance” is needed. The

initial guess file, initialGuess.txt, contains a feasible, but not

optimal, solution to the same problem. Then run

> ./ampl pendulum.run

to solve the nonlinear optimization problem using Ipopt.

The optimization result is found in the file pendulum_res.txt.

• Open assignment5.m and respecify your MPC parameters from

Assignment 4. Run assignment5.m then simulate the system us-

ing cart_pend.mdl. Simulate your system with different initial

conditions on the pendulum and both in open and closed loop.

Redesign your MPC controller if you are not satisfied with the

result. The script plot_optim plots the pendulum trajectory and

the elliptic constraint.

• Test your design on the real process.

11



-0.8

0.4

-0.35

-0.1

-0.7

-0.25

y

x

θ

(xp,yp)

Figure 4 Pendulum constraints
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