
FRTN05 Nonlinear Control and Servo Systems
Laboration 2 – Nonlinear Control

The Furuta Pendulum
Bo Lincoln, Dept. of Automatic Control

1



x

y

z

u

ϕ

θ

Figure 1 A schematic picture of the Furuta pendulum

1. Introduction

In this laboratory session we will design a nonlinear controller for an in-

verted pendulum on a rotating base (known as a “Furuta” pendulum). This
is done by Lyapunov design, i.e. by inventing a Lyapunov function and

making sure its derivative is negative by control. In the end of the lab there

is also a short section on friction compensation, which makes a huge

difference for our pendulum.

Important! There are 5 assignments in the lab. Number 2 and 3 have

home assignment parts, which you will have to do before the lab.

The lab will be performed in Matlab Simulink, which you are now famil-

iar with. We will both run pure simulations with a model of the pendulum

in Simulink, and we will also run it with “hardware-in-the-loop”. The latter

means that we will replace the pendulum model with a special Simulink

block which communicates with the real pendulum in real time, and actu-

ally run our algorithms on the real pendulum.

The Matlab files you need to copy are pendlib.mdl, pendbasic.mdl,

estimatefriction.mdl, and pendinit.m. Start Matlab and run pendinit.

2. The Furuta Pendulum

The Furuta pendulum is a free pendulum on a rotating arm, see Figure 1.

We can control the torque for rotating the arm, and if it is done right, we

can balance the pendulum in the upright position. To be able to do this,

we need a correct mathematical model of the nonlinear dynamics of the

pendulum.

2.1 Nonlinear Model

The dynamics of the Furuta pendulum are rather complicated due to the

rotation of the pendulum. Some Lagrange theory “simplifies” matters, and

2



after some algebra we end up with:

(Jp + Ml
2)(θ̈ − ϕ̇2 sinθ cosθ ) + Mrlϕ̈ cosθ − �l(M +m/2) sinθ = 0

Mrlθ̈ cosθ −Mrlθ̇ 2 sinθ + 2(Jp +ml
2)θ̇ϕ̇ sinθ cosθ

+(J +mr2 + Mr2 + (Jp +ml
2) sin2θ )ϕ̈ = u.

(1)

To make it more readable, we introduce

a = Jp + Ml
2 b = J + Mr2 +mr2

c = Mrl d = l�(M +m/2)
(2)

and the equations of motion can be rewritten:

aθ̈ − aϕ̇2 sinθ cosθ + cϕ̈ cosθ − d sinθ = 0

cθ̈ cosθ − cθ̇ 2 sinθ + 2aθ̇ϕ̇ sinθ cosθ + (b+ a sin2θ )ϕ̈ = u,
(3)

where θ is the angle of the pendulum, and ϕ is the angle of the arm. The

control signal, u, is the motor torque on the arm.

Approximate coefficients for the pendulum used in the laboration are:

l = 0.413 m r = 0.235 m

M = 0.01 k� J = 0.05 k�m2

Jp = 0.0009 k�m
2 m = 0.02 k�

� = 9.8

2.2 Linearized Model

To be able to stabilize the pendulum in the upright position, we need a

controller. The most commonly used method to design a controller is to

linearize the nonlinear model and form a linear controller for this model.

To do this, we introduce the state

x =


θ θ̇ ϕ ϕ̇




and linearization of the system (3) around

x =


 0 0 0 0


 ,

which is the upright position of the pendulum with zero velocity, gives

ẋ = Ax + Bu =



























0 1 0 0
bd
ab−c2

0 0 0

0 0 0 1
−cd
ab−c2

0 0 0



























x +



























0
−c�
ab−c2

0
a�
ab−c2



























u. (4)

3



x

u

Model

Pendulum−model

K*u

Matrix
Gain

Figure 2 The set-up to simulate your linear controller.

ASSIGNMENT 1

a) Examine the linearized model (A,B) i.e. which eigenvalue corre-
sponds to which state and where does the control action effect the

system?

b) There are many ways to determine a linear control law for the
system (pole placement , LQ-design, loopshaping etc). Show that
the linear feedback

u = −Lx

with L =


−7.5343 −1.3465 0 −0.2216


 almost stabilizes

the linear model. Which state is not stabilized? If there is time,

try your own design.

c) Open Simulink and get the “Pendulum-model” block from
pendlib.mdl. Insert this controller and simulate it (see Figure
2). Does it work? Find a region in the θ -θ̇ -plane for which the

linear controller is able to keep the pendulum in an upright posi-

tion. (Initial states are found in the variable x0.) Why does it not
work for all initial states?

3. Swinging Up the Pendulum

Now that we have a stabilizing controller for the upright position, we would

like to design a controller which gets the pendulum close enough for our

linear controller to work (a “swing-up”-controller). To be able to solve the
problem, we will approximate the Furuta pendulum model by a planar

pendulum (see Figure 3).

4



Pivot point

θ

a

Figure 3 The planar pendulum, with only two states. The dashed circle is the

possible “orbit” for the pendulum mass.

The equations of motion now simplify to

θ̈ =
M�l

Jp
sinθ −

Ml

Jp
a cosθ , (5)

where a is our control signal. It is the acceleration sideways of the pivot

point (Do not mix a up with the constant in (2)). We can create this
acceleration with our usual control signal u, i.e. the torque to the pendulum

arm.

All parameters of the pendulum can actually be described by one parameter,

which we call ω 0:

ω 0 =

√

M�l

Jp

and the equation simplifies to

θ̈ = ω 20 sinθ −ω 20
a

�
cosθ

ASSIGNMENT 2

Home assignment: The nameω 0 suggests that it denotes a frequency.

Show why, and suggest a way to estimate this parameter from experi-

ments. Hint: Keep a = 0 and linearize around θ = π (down position).
At the lab: Do the experiment on the Pendulum-model in Simulink or

on the real pendulum. Which value of ω 0 did you get?

(For the model to work be sure to use the Fixed-step ode5 solver with
step size h = 0.01. The solver settings can be found in the Simulation
Parameters dialog. Note that the θ -measurements are discontinuous at

the downward position.)

3.1 Energy Control

A very useful method to get the pendulum to the upright position is to

control its energy to be the energy of the top position. The total energy

5



(potential energy + kinetic energy) of the pendulum is:

E = M�l(cosθ − 1) +
Jp

2
θ̇ 2

or normalized by ω 20

En = cosθ − 1+
1

2ω 20
θ̇ 2

If the pendulum has energy En = 0, it will either be moving along the
orbit in Figure 3 or be at the top position, with zero velocity (check this by
inserting θ = 0, θ̇ = 0). This is due to the fact that no energy leaves the
pendulum in our model. When the pendulum is close to the “up-position” it

will have low speed, and it is very easy for the linear controller to “catch”

it.

ASSIGNMENT 3

Home assignment: We want the energy En → 0 both if the pendulum

has too much or too little energy. Let V (x, a) =
(

En(x, a)
)2
be a Lya-

punov function candidate. Find a simple controller a = F(x) such that
d
dt
V ≤ 0 for all x.
Hints:

• Differentiate and simplify V first, and see how you can choose a

to make the derivative negative.

• Don’t use control signals larger than 1.

• Make the controller non-linear!

At the lab: Simulate the controller with the Pendulum-model in

Simulink. If it does not work properly, modify it until it does.

4. The Full Monty

Now it is time to put it all together. We want the controller to have two

modes:

1. Swinging up the pendulum (your controller).

2. Catching and balancing it in the top position.

In the Simulink model pendbasic.mdl a working top-position-controller is

already given.

6



u

xu

Top controller

Thetad

Theta

Phid

Phi

Model

Pendulum−model

Demux

Figure 4 The Simulink setup with pendulummodel and a top-position controller.

u

xu

Top controler

Thetad

Theta

Switch

xu

Swing−up

Phid

Phi

Model

Pendulum−model

xsel

Mode select

Demux

Figure 5 The full pendulum controller.

ASSIGNMENT 4

Construct (in Simulink) a switching method, which switches between
your swing-up controller and the given top-position controller. See Fig-

ure 5 for a useful structure. Hint: For example, switch to top controller

when θ and θ̇ are both “small”, i.e. close to the top position with low

velocity.

When it works with the Pendulum-model, go to the real pendulum and

run your controller there. Modify it until it works.

5. Friction Compensation

When the pendulum is in its upright position, it oscillates in ϕ (the arm
position). This is due to friction which makes the arm stick although u ,= 0.
A simple way of modeling the friction is shown in Figure 6.

A simple but efficient way of compensating for this is to estimate k off-

line (k̂) and give the control signal a extra “push” in the right direction
depending on ϕ̇ – see Figure 7.

In the Simulink model estimatefriction.mdl (see Figure 8) a simple
PI-controller has been implemented to keep the arm velocity ϕ̇ constant

(with the pendulum hanging down).

7



+

Pendulum

Relay

-

Friction

Control signal Torque

u τ

ϕ̇

k

Figure 6 A model of the ϕ friction. The friction will work in the opposite direction

of the velocity ϕ̇ . The constant k is the friction torque.

Relay

+ tau

Pendulum

-

Friction

+
+

Relay

u ucomp ϕ̇

k

k̂

Figure 7 A simple friction compensation where an extra torque k̂ is added in the

right direction.

ASSIGNMENT 5

How can you use this to get an estimate k̂ of the friction torque? Es-

timate it for the pendulum-model, and if there is time, on the real

pendulum.

Insert the “Friction-compensation” block from pendlib.mdl into your

controller. Insert the estimate k̂ and simulate. Does it perform better

in the top position?

If there is time, run it on the real pendulum too.

u

To Workspace

Selector

Scope1

u x

Pendulum−model

s

0.3*[1 0.5]

PI−controller

Vref

Constant

Figure 8 The Simulink setup to estimate friction.

8


