
Department of

AUTOMATIC CONTROL

Nonlinear Control and Servo Systems (FRTN05)

Exam ­ June 1, 2009 at 14­19

Points and grades

All answers must include a clear motivation. The total number of points is 25. The

maximum number of points is specified for each subproblem. Most subproblems

can be solved independently of each other. Preliminary grades:

3: 12− 16 points

4: 16.5− 20.5 points

5: 21− 25 points

Accepted aid

All course material, except for exercises and solutions to old exams, may be

used as well as standard mathematical tables and authorized “Formelsamling i

reglerteknik”. Pocket calculator.

Results

The exam results will be posted within two weeks after the day of the exam on

the notice-board at the Department. Contact the lecturer Anders Robertsson for

checking your corrected exam.

Note!

In many cases the sub-problems can be solved independently of each other.

1



Nonlinear Control and Servo Systems, June 2009

Solutions to the exam in Nonlinear Control and Servo Systems (FRTN05)
June, 2009.

1.

a. Rewrite the following differential equation into state space form.

ÿ+ (ẏ− 1)ẏ− y(1− y2) = 0 (1)

(1 p)

b. Draw a block diagram of the system in (1) (for instance showing how you
would simulate the system in Simulink). (1 p)

Solution

a. Introduce {x1 = y, x2 = ẏ}

ẋ1 = x2

ẋ2 = x1(1− x
2
1) + x2 − x

2
2

b. Either we can construct it from the answer in (a) or as follows: We have
a second order system and thus need two integrators with input/outputs

corresponding to {dy
dt
, y} and {d

2y

dt2
,
dy
dt
}, where the matching dy

dt
is connected.

Rewrite the equation as ÿ = −(ẏ−1)ẏ+ y(1− y2) where we see what should
be the inputs connected to the integrator with input ÿ, see Figure 1.

2. Imagine an isolated island with no population, i.e., no animals or other

living creatures. At a particular time, t0, two species manage to arrive to

the island at the same time. One of the species is a plant eater, but the other

is a meat–eater, and the first species therefore serves as foot source for the

other species. Now, denote the population size (the number of creatures) of
the plant–eaters by x1 and the population size of the meat–eater by x2. A

simple model of the evaluation of the species will then follow the Lotka–

Volterra model, given by (a simplified version)

ẋ1 = x1(1− x1) (2)

ẋ2 = x2(x2 − x1) (3)

a. Find and classify all equilibria and determine if they are stable or asymp-

totically stable if possible. Discuss if the stability results are global or local.

(2 p)

b. Consider the results of the stability analysis. Which of the following sce-

narios will appear on the island after many years (according to the model),
when the initial populations were relative small (Motivate your answer!):

1. The two species will both have survived and now live in a balance,

where the meat–eaters will only reproduce itself in order to compensate

for what the meat–eaters eat.
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Figure 1 Suggested solution of block diagram in Problem 1.

2. Only the plant–eaters will have survived, while the meat–eaters will

all have died.

3. Only the meat–eaters will have survived, while the plant–eaters will

all have died.

4. None of the species have survived.

If you have not been able to solve subproblem (a), you can assume that
the following equilibria exist: (x1, x2) = (2, 3) with poles/eigenvalues in
(−1,−4), and (x1, x2) = (0, 4) with poles/eigenvalues in (0,−1),

Note: This is not necessarily the correct answer to subproblem (a)!!! (1 p)

Solution

a. The equilibria of the system is found by solving

0 = x1(1− x1) (4)

0 = x2(x2 − x1) (5)

which gives the points (x1, x2) = (0, 0), (1, 0), (1, 1)

Linearization of the system gives

˙∆x1 = (1− 2x01)∆x1 (6)

˙∆x2 = (2x02 − x
0
1)∆x2 − x

0
2∆x1 (7)
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which gives the stability matrix

A =

[

(1− 2x01) 0

−x02 (2x02 − x
0
1)

]

(8)

For the three equlibria we have:

(x1, x2) = (0, 0) : A =

[

1 0

0 0

]

eigenvalues of (0, 1) [ unstable node

(x1, x2) = (1, 0) : A =

[

−1 0

0 −1

]

eigenvalues of (−1,−1) [ stable node

(x1, x2) = (1, 0) : A =

[

−1 0

−1 1

]

eigenvalues of (−1, 1) [ saddle point

All stability results found from linearization are local, since the linearized

model is a local approximation of the nonlinear model.

b. Since we have an equilibrium in (1,0) which is locally asymptotically stable,
we are likely to converge to this point. This means that the meat–eaters

will eventually die (x2 → 0), and the plant–eaters will converge to a steady
population of 1. Therefore, the answer is 2). The equilibrium in the origin
is not stable, so any deviation (like some small population landing on the
island, will move away from the origin.

Actually, the system behaves rather strange if x2 is initiated too high (above
1), since the population of the meat–eaters will go towards infinity, even if
the amount of foot (plant–eaters) are limited. This would mean that 1) is
also correct, but that can not be seen from the stability results. By stating

that the initial conditions is close to the origin, this situation is not relevant.

If a) was not solved correctly, and the given equlibria–information is used,
the correct answer is 1), since this is the only stable equilibrium. The equi-
librium in (0,4) (which is unstable) does not really give any meaning, since
it means that meat–eaters can survive without any meat (the plant–eaters).
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Figure 2 The non-linear function f (x) in Problem 3.
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Figure 3 Describing function 1 in Problem 3.

3. In Figure 2 a non-linear function f (x) is shown. In Figures 3 – 5, three
describing functions of non-linearities are drawn.

a. Which one of the three describing functions (Figs. 3 – 5) corresponds to
f (x)? Motivate your answer. (1 p)
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Figure 4 Describing function 2 in Problem 3.
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Figure 5 Describing function 3 in Problem 3.

b. In Figure 6 we find the Nyquist and Bode curves of a linear system G.

Assume that the non-linearity that gives rise to the describing function in

Figure 3 is used in a negative feedback connection with G. Do we possibly

get limit cycles? If so, state possible amplitudes of the limit cycles and if

they are stable or unstable?

Do the same for the non-linearities corresponding to the describing func-

tions in Figures 4 and 5. (1.5 p)

c. What would the corresponding frequency of the limit cycles in (b) be? Use
Figure 6. (1 p)

Solution

a. We see that the non-linearity f (x) starts of with a constant slope of 1. Hence
the describing function should be constant at 1 in the beginning. The only

alternative is then the one in Figure 3. (Of course we could relate all the
changes in the slope of f (x) to the appearance of the describing function).

b. If we should expect a limit cycle, then − 1
N(A) should intersect the Nyquist

curve. For the first and second describing function we have that − 1
N(A) ≤ −1

and hence these should not give rise to limit cycles.

Since the third describing function fulfills that − 1
N(2) = −

1
2
and G(iω o) (

−0.6, we understand that we have two intersections. The first intersection
occurs when A ( 1.8 and the second intersection occurs when A ( 4.5.
Examining the describing function around the first intersection, we see

that − 1
N(A) goes from the outside of G(iω ) to the inside, with increasing A.

Hence, we conclude that the possible limit cycle at A ( 1.8 is unstable. By
similar argument, we understand that the possible limit cycle at A ( 4.5 is
stable.

c. The frequency of all possible limit cycles is approximately 2.5 rad/s. To
understand this, we see in the Bode plot that for ω ( 2.5 we have that
arg(G(iω )) ( −180.
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Figure 6 Nyquist and Bode curves of the linear system G considered in Problem 3.

4. Consider an uncontrolled second–order time–invariant system, expressed in

the states x1(t) and x2(t). Assume that a limit–cycle exists, as illustrated
in the phase–plane diagram in Figure 7.

a. Assume that the limit cycle is stable, and that the system is initiated in the

point A ((x1(0), x2(0)) = A). Is it possible for the system to pass through
the point B? Motivate your answer. (0.5 p)

b. Assume that the limit cycle is unstable, and that the system is initiated in

the point A ((x1(0), x2(0)) = A). Is it possible for the system to pass through
the point B? Motivate your answer. (0.5 p)

Solution

a. In order for the system to reach point B, it will have to pass the limit cycle.

For a stable limit cycle, the system will remain on the limit cycle, and will

thus never move toward point B. The answer is therefore "No".

b. Again, the system will have to pass the limit cycle in order to go to point

B. When the system is exactly on the limit cycle, it will remain there, even

though it is unstable. The answer is therefore again "No".
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Figure 7 Phase–plane diagram for problem 4

5. Consider the system
ẋ1 = 5 x1x2

ẋ2 = 2 x
5
1 + 3u

Use Lyapunov based methods to find a feedback control law using, u, such

that the origin can be shown to be globally asymptotically stable.

Hint: You may start with

V (x) =
1

2
(x21 + x

2
2)

as a Lyapunov function candidate. (3 p)

Solution

Consider the Lyapunov function candidate

V (x) =
1

2
(x21 + x

2
2)

V (0, 0) = 0

V (x1, x2) > 0 when (x1, x2) ,= (0, 0)

V (x1, x2) → ∞ when pxp → ∞.

V̇ (x) = x1 ẋ1 + x2 ẋ2

= (5x1x2)x1 + (2 x
5
1 + s u)x2

= x2 (5 x
2
1 + 2 x

5
1 + 3u)

If we choose

u = −
2

3
x51 −

5

3
x21 − x2
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we get

V̇ (x) = −3 x22 ≤ 0

which implies stability, but not asymptotic stability. V̇ = 0 along the line
x2 = 0 but the only invariant subset of this line is the origin. This can be
seen by inserting the suggested control law.

ẋ2 = 2 x
5
1 + 3u = −5 x

2
1 − 3 x2 = {x2 = 0 on the line} = −5 x

2
1

Thus ẋ2 ,= 0 whenever x1 ,= 0 and the solution curves can not stay on the
line x2 = 0 except for at the origin. This shows global asymptotic stability
of the origin.
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Figure 8 Nyquist diagram for Problem 6.

6. Parts of the Nyquist plot of the open-loop transfer function

G(s) =
20

(s+ 1)2

is shown i Figure 8. The signals in the system are defined by y = G(s)u.
The system is then closed by the uncertain feedback

u = −(1+ ∆)y.

with ∆(y) belonging to a symmetric cone [−k, k]. For how large values of k
can you guarantee stability? (2 p)

Solution

We should find the maximum uncertainty sector [1 − k, 1 + k] for which
we can guarantee stability. We will use the circle criterion. Therefore try

different values of k and draw the approximate circle in the Nyquist plot.

The choice k = 0.45 gives the plot in Figure 9. Notice the circle is not
centered around -1.

An alternative solution is to consider the system
G

1+ G
in negative feed-

back connection with the uncertainty ∆ and apply the Small gain theorem.

sup

∣

∣

∣

∣

G

1+ G

∣

∣

∣

∣

( 2.18[ k = supp∆p ( 0.45. To realize that sup

∣

∣

∣

∣

G

1+ G

∣

∣

∣

∣

( 2.24

we have that

∣

∣

∣

∣

G

1+ G

∣

∣

∣

∣

2

=
202

(21−ω 2)2 + 4ω 2
=

202

212 − 38ω 2 +ω 4

This expression has its maximum when ω 2 = 38/2 = 19 and we get

sup

∣

∣

∣

∣

G

1+ G

∣

∣

∣

∣

2

=
202

212 − 192
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Figure 9 Nyquist diagram for Problem 6 with circle.

7. Consider a linear system which is represented by the transfer function

Y(s) =
2(s+ a)

(s+ 5)(s+ 15)
U(s)

where you can choose the positive parameter a. You want the mapping from

u to y to be passive. Which values of a can you choose? (1 p)

Solution

If the real part of G(iω ) ≥ 0 for all ω , the system is passive.

G(iω ) =
2(iω + a)

(iω + 5)(iω + 15)

=
(40 − 2 a)ω 2 + 150 a

w4 + 5625+ 250w2
+
−2ω 3 + 150ω − 40 aω

ω 4 + 5625+ 250ω 2
i

As ℜe{G(iω )} should be ≥ 0 for all ω , we see that 0 ≤ a ≤ 20.

8. Consider the following non-linear system:

ẋ1 = x
2
2

ẋ2 = x1 − x
3
2 + u

which is controlled by the nonlinear control law

u = −sign(x2)
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a. This switching control law suggests that we might get a sliding mode. Let

σ (x) = x2

On which part of the x1 axis (where σ (x) = x2 = 0) will there be a sliding
mode? (Any method is OK to use). (1 p)

b. Will the system converge to the origin when it has reached the sliding mode?

Use the equivalent–control method to describe the dynamics in the sliding

mode. (1 p)

Solution

a. The requirement for a sliding mode is that

{

∇σ (x) f+(x) < 0

∇σ (x) f−(x) > 0

where f+(x) is the system dynamics when σ (x) > 0 and vice verse. Thus

f+(x) =









x22

x1 − x
3
2 − 1








, f−(x) =









x22

x1 − x
3
2 + 1








.

and

∇σ (x) =


 0 1



 ,

There will be sliding mode at σ (x) = x2 = 0 when

∇σ (x) f+(x) = x1 − x
3
2 + 1 = x1 − 1 < 0[ x1 < 1

and

∇σ (x) f−(x) = x1 − x
3
2 + 1 = x1 + 1 > 0[ x1 > −1.

[ Sliding mode when px1p < 1 and x2 = 0.

b. Equivalent control method: Find ueq which makes

σ (x) = σ̇ (x) = 0

on the sliding surface.

σ̇ (x) = ẋ2 = x1 − x
3
2 + ueq = x1 + ueq = 0

[ ueq = −x1

[









ẋ1

ẋ2








=









x22

x1 − x
3
2 + ueq








=









0

x1 − x1








= 0

The system will stop as soon as it reaches the sliding surface, and will thus

NOT go to the origin.

9. Consider the system

ẋ1 = (x1 − x2)
2 + (x1 − x2)x2 + u (= x21 − x1x2 + u)

ẋ2 = −x2 + u
(9)
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a. Show that the open system of (9) is not stable, (open: u = 0). (1 p)

b. We would like to stabilize the system (9) using backstepping. Explain the
problem of directly applying backstepping to stabilize the system. (0.5 p)

c. To get the system in strict feedback form we could introduce an appropri-

ate state transformation. Find this transformation by suggesting a simple

change of coordinates (Hint: see (9)) and use backstepping to make the
origin globally asymptotically stable. (2 p)

Solution

a. Since ẋ2 = −x2, after a while x2 = 0. Then ẋ1 = x
2
1 and if x1 ≥ r > 0 then

ẋ1 ≥ r
2 > 0 for all times, meaning that x1 →∞.

b. The control signal enters both state equation and hence, the system is not

in strict feedback form. This means that the requirements for applying

backstepping are not fulfilled.

c. If we subtract the first state equation by the second state equation we would

get rid of the control signal. That is, try the transformation z1 = x1 − x2
(and leave x2 as it is). This gives

ż1 = z
2
1 + (z1 + 1)x2

ẋ2 = −x2 + u

Now, start with the equation

ż1 = z
2
1 + (z1 + 1)φ1(z1)

Choosing φ1(z1) = −z1 and the Lyapunov function V1(z1) =
z21
2
we stabilize

the system. To backstep, introduce

z2 = x2 − φ1(z1) = z1 + x2

We get the system

ż1 = −z1 + (z1 + 1)z2

ż2 = z1z2 + u

Let V2(z) = V1(z1) +
z2
2

2
. Then

V̇2(z) = z1 ż1 + z2 ż2 = z1(−z1 + (z1 + 1)z2) + z2(z1z2 + u) =

= −z21 + z2(z1(z1 + 1) + z1z2 + u) = [u = −z1(z1 + 1) − z1z2 − z2] =

= −z21 − z
2
2

Hence u = −2x21 + 3x1x2 − x
2
2 − 2x1 + x2 stabilizes the system.

13



Nonlinear Control and Servo Systems, June 2009

New formulation of the Optimal Control problem

10. You should have a meeting in the conference room in 24 hours. The temper-

ature, T , is 15○C. You want to increase T to 20○C before the meeting but

do not want to use too much energy and have decided to minimize
∫

u2dt

over the time interval. The temperature dynamics can be modeled with the

following first order model in this region.

Ṫ = −
1

48
T + u (10)

where u is your control signal. The units are [C] for T and [C/h] for Ṫ .

a. State the above described optimal control problem. (1 p)

b. Solve the optimal control problem (2 p)

c. Your heater has a maximum capacity of umax = 0.5. Is the optimal control
problem feasible then, i.e., will the conference room be heated on time?

Motivate your answer. (1 p)

Solution

a. The optimal control problem becomes

min
∫ 24

0
u2 dt

subject to: Ṫ = −T/48+ u
T(0) = 15
T(24) = 20

b. The Hamiltonian is H = u2 + λ(−T/48+ u). The Maximum principle says
that the following should hold

�H

�u
= 2u+ λ = 0

and

λ̇ = −
�H

�T
=
1

48
λ

λ(24) is free. This means that λ(t) = c1e
t/48 which means that u(t) =

−c1e
t/48/2. Insert this into the system dynamics to decide c1.

T(24) = 20 = 15e−24/48 −
c1

2

∫ 24

0

e−(24−t)/48et/48dt

= 15e−1/2 −
c1

2

[

24e−(24−2t)/48
]24

0

Rearranging the terms gives

c1 =
15e−0.5 − 20

12(e0.5 − e−0.5)

14
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c. Apply maximum control signal

T(24) = 15e−1/2 + 0.5

∫ 24

0

e−(24−t)/48dt

= 15e−1/2 + 0.5
[

48e−(24−t)/48
]24

0

= 15e−1/2 + 24(1 − e−1/2) = 24− 9e−1/2 = 18.54 < 20

If we have this constraint the optimization problem is not feasible and we

cannot reach the desired temperature.
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