
Solutions to the exam in Real-Time Systems, Jan 10,

2012

These solutions are available on WWW:

http://www.control.lth.se/Education/EngineeringProgram/FRTN01.html

1.

a. Since A is nilpotent (A2 = 0), the Taylor series expansion method is straight-
forward.

Φ = eAh = I + Ah+
(Ah)2

2
+ ... =









1 0

3h 1









Γ =









0

h









b. Here the Laplace transform method is the most convenient.

Φ = eAh = L−1(sI − A)−1 =









1 1
4
(1− e−4h)

0 e−4h









Γ =
1

4









h+ 1
4
e−4h − 1

4

1− e−4h









2.

a.

H1(z) =
z+ 2

z2 − 0.25
=

z+ 2

(z+ 0.5)(z− 0.5)

H2(z) =
z− 1

z2 − 3.5z+ 1.5
=

z− 1

(z− 0.5)(z− 3)

b. The zeros and poles are

H1 H2

Zeros -2 1

Poles 0.5 and -0.5 0.5 and 3

c. For the first system the static gain is

H1(1) =
1+ 2

1− 0.25
= 4

The second system has a pole outside the unit circle, and hence infinite

static gain.

3.

1

a. The CPU utilization is

U =
∑

i

Ci

Ti
=
1

40
+
1

4
+
1

50
= 0.295

b. The normal schedulabiliy test for EDF, i.e. U ≤ 1 only holds when Di =
Ti and that is not the case here. Although more elaborate schedulability

tests exist they are not part of the course requirements. Hence, the only

possibility left is to draw the schedule for one hyperperiod (= 200) and
check manually that all the deadlines are met. This quite tedious work

leads to the answer that all deadlines will be met for the task set.

Accidentally this subproblem turned out more difficult than anticipated. This

will be taken into account in the grading.

c. Yes. A sufficient condition for schedulability with DM scheduling is

n
∑

i=1

Ci

Di
≤ n(21/n − 1)

In this example we have

n
∑

i=1

Ci

Di
=
1

40
+
1

4
+
1

2
= 0.775

n(21/n − 1) = 3(21/3 − 1) (0.7798

d. The sufficient conditions for rate monotonic schedulability are only valid

when Di = Ti, so we need to do an exact analysis. The priorities are in
descending order B, A, C. The worst case response times Ri for the different

tasks are

RB = CB = 1 ≤ DB = 4

R1A = CA = 1

R2A = CA +

⌈

R1A
TB

⌉

CB = 1+

⌈

1

4

⌉

1 = 2

R3A = CA +

⌈

R2A
TB

⌉

CB = 1+

⌈

2

4

⌉

1 = 2 ≤ DA = 40

R1C = CC = 1

R2C = CC +

⌈

R1C
TA

⌉

CA +

⌈

R1C
TB

⌉

CB = 1+

⌈

1

40

⌉

1+

⌈

1

4

⌉

1 = 3 > DC = 2

Hence the deadline for task C can not be guaranteed to be met.

4.

2

a. The largest value is 14, requiring 4 integer bits, leaving n = 16−1−4 = 11
fractional bits.

b. The fixed-point representation of a coefficient a can be calculated as A =
round(a ⋅ 2n). This results in

x(k+ 1) =

(

16998 12288

6554 28672

)

x(k) +

(

0

512

)

u(k)

5. The three main improvements are:

1. There is no synchronization between calculateOutput and updateState.

This makes it possible for the GUI to update the controller parameters

between the call to calculateOuput and the call to updateState.

2. The input output latency is not minimized.

3. The sleep does not take into account the execution time of the algo-

rithm.

The improved, but not perfect, code is shown below (only the run() method):

.....

public void run() {

double u;

double y;

double ref;

long diff;

long t = System.currentTimeMillis();

while (true) {

y = analogIn.get();

ref = referenceGenerator.getRef();

synchronized (controller) {

u = limit(controller.calculateOutput(y, ref), uMin, uMax);

analogOut.set(u);

controller.updateState(u);

}

t = t + controller.getSamplingPeriod();

duration = t - System.currentTimeMillis();

try {

sleep(duration);

} catch (InterruptedException e) {

}

}

}

6.

3

a. A continuous-time double pole in s = −1 corresponds to a discrete-time
double pole in e−h = e−0.1, i.e., the desired closed loop characteristic poly-
nomial should be

(z− e−0.1)2 = z2 − 2e−0.1z+ e−0.2 = z2 + p1z+ p2

With the linear feedback

u(k) = −l1x1(k) − l2x2(k)

the closed-loop system becomes

x(k+ 1) =









1− l1h
2/2 h− l2h

2/2

−l1h 1− l2h








x(k)

The characteristic polynomial of the closed-loop system is

z2 +

(

l1h
2

2
+ l2h− 2

)

z+

(

l1h
2

2
− l2h+ 1

)

Comparing this with the desired characteristic polynomial leads to the

following linear equations for l1 and l2

h2l1

2
+ hl2 − 2 = p1

h2l1

2
− hl2 + 1 = p2

with the solution

l1 =
1

h2
(1+ p1 + p2) = 0.9056

l2 =
1

2h
(3+ p1 − p2) = 1.8580

b. The characteristic polynomial of the observer is given by

det(zI − Φ + KC) = det









z− 1+ k1 −0.1

k2 z− 1









= z2 + (k1 − 2)z+ 1− k1 + 0.1k2

The desired characteristic polynomial is

(z− e−0.2)2 = z2 − 2e−0.2z+ e−0.4

Equating the coefficients we get

{

k1 − 2 = −2e
−0.2

1− k1 + 0.1k2 = e
−0.4

[K =


 0.3625 0.3286





T

4

c. The model and feedforward generator design is based is performed as follows.

In order to make sure that the states of the model are compatible with the

states of the process the following approach can be used. To begin with the

model can be chosen identical to the process, i.e.,

xm(k+ 1) = Φxm(k) + Γu f f (k)

ym(k) = Cxm(k)
(1)

The dynamics of the model can then be modified by the linear control law

u f f (k) = −Lmxm(k) + lruc(k) (2)

The model dynamics is then given by

xm(k+ 1) = (Φ − ΓLm)xm(k) + Γlruc(k)

ym(k) = Cxm(k)
(3)

Here, Lm is chosen to give the model the desired eigenvalues and lr is

chosen to give the model a static gain of 1. The feedforward control signal

u f f (k) is generated in such a way that it will give the desired behaviour
when used as an input to the process.

The desired characteristic polynomial of the model is given by

(z− e−2h)2 = (z− e−0.2)2 = z2 − 2e−0.2z+ e−0.4

From the first sub-problem it follows that the coefficients of Lm should be

chosen as

l1 =
1

h2
(1+ p1 + p2) = 3.2859

l2 =
1

2h
(3+ p1 − p2) = 3.4611

Finally, lr is chosen to get the static gain 1. This is obtained by setting

lr =
1

C(I − Φ + ΓLm)−1Γ
= 3.2

d. The block diagram is given by Figure 1 with the internal structure of the

∑ ∑

xm

u

u

ff

� x
Observer

L Process

−

u fb y

u c Model and

Feedforward

 Generator

^

Figur 1 Block Diagram

model and feedforward generator given by Figure 2.

5

Process

Model

Model and Feedforward

Generator

Σ

u f f

uc
lr

xm
Lm

Figur 2 Internal structure of model and feedforward generator

e. Both the observer and the process model should be updated in UpdateState.

Also in UpdateState pre-calculations can be done both for u and for u f f .

This leads to the following pseudo-code:

CalculateOutput:

Sample y and obtain uc
u f f = u f f + lruc
u = u+ u f f
Output u

Update State:

x̂ = Φ x̂ + Γu+ K (y− Cx̂)
xm = Φxm + Γu f f
u f f = −Lmxm
u = L(xm − x̂)

7. The solution is shown in Figure 3.

6

Figur 3 Winder Grafcet

7

