
Solutions to the exam in Real-Time Systems, Dec 12,

2011

These solutions are available on WWW:

http://www.control.lth.se/Education/EngineeringProgram/FRTN01.html

1. Priority inheritance solves the problem with priority inversion. Priority in-

versions occurs when a lower priority process blocks a higher priority pro-

cess without any shared resources directly involved between the lower pri-

ority process and the higher priority process. The typical case is when we

have a low priority process and a high priority process that communicate

using a shared resource, e.g., a monitor, wnd when there in addition is a

medium priority process which does not access the monitor. The situation

occurs when the monitor is held by the low priority process and the high

process wants to access it. If there is a medium priority process that is

readý for execution it will prevent the low priority process from finishing

its work inside the monitor and, hence, indirectly block the high priority

process.

With priority inheritance the priority of the process that holds a monitor

will be raised to the priority of the process that wants to enter the monitor,

and later reset again when it leaves the monitor.

u

PD

e

– +

A

M

Σ Σ

Σ

  

K

Ti     

1

s

Σ

–

+

Σ

+

−
    

1

Tm

    

1

Tt

    

1

s

    

1

Tt

  ysp

  y

2.

3. G1 has a pole in zero, which means that it should exhibit deadbeat behavior.

G2 on the other hand is an integrator, which means that its pulse response

should be a constant. G3 has a pole on the negative real axis, and its respon-

se is on the form x(n) = −0.5x(n − 1) = 0.25x(n − 2) = ⋅ ⋅ ⋅ = (−0.5)nx(0).
G4 on the other hand has a pole in 0.5, which corresponds to the response

x(n) = 0.5nx(0). Therefore the matching is:
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G1 → 1

G2 → 4

G3 → 3

G4 → 2

4.

a.

U(z) = K (1 + Td
z− 1

h
)E(z)

b.

U(z) = K (1+
2Td

h

z− 1

z+ 1
)E(z)

c. Using forward difference the controller becomes non-causal and, hence, can-

not be implemented.

5.

a. Since the A-matrix is nilpotent, Φ = exp(Ah) can be computed by series
expansion.

A =







0 1 −1

0 0 1

0 0 0







A2 =







0 0 1

0 0 0

0 0 0







A3 =







0 0 0

0 0 0

0 0 0







Φ = exp(Ah) = I + Ah+ A2h2/2 =







1 h h2/2− h

0 1 h

0 0 1







Γ =

∫ h

0

exp(As)dsB =

∫ h

0







s2/2− s

s

1






ds =







h3/6− h2/2

h2/2

h






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The discrete time system is

x(t+ h) =







1 h h2/2− h

0 1 h

0 0 1






x(t) +







h3/6− h2/2

h2/2

h






u(t)

y(t) =
(

1 0 0

)

x(t)

b. For small values of h, the elements of Γ and the off-diagonal elements of

Φ will be very small, and the diagonal elements of Φ are equal to 1. This

means that at each time step, the new value of the state will be equal to

the old value of the state plus a small increment. If this increment is too

small, it will be rounded to zero.

6.

a.

x(kh+ h) = Φx(kh) + Γ1u(kh− h) + Γ0u(kh)

where

Φ = e−h = 0.6065

Γ1 = e
−(h−τ )2(1− e−τ ) = 2e−(h−τ ) − 2e−h = 0.5966

Γ0 = 2(1− e
−(h−τ )) = 0.1903

b. The augmented state space system with the state vector

z(kh) = [x(kh) u(kh− h)]T is

z(kh+ h) = Φaz(kh) + Γau(kh)

where

Φa =









Φ Γ1

0 0







 =









0.6065 0.5966

0 0









Γa =









Γ0

1







 =









0.1903

1









c. The desired characteristic polynomial is

z(z− e−1) = z2 − 0.3679z

With L = (l1 l2) the characteristic polynomial is

det(zI − (Φa − ΓaL)) = det

(

z− (0.6065− 0.1903l1) 0.1903l2 − 0.5966

l1 z+ l2

)

= z2 + (l2 + 0.1903l1 − 0.6065)z+ 0.5966l1 − 0.6065l2
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Setting the corresponding coefficients equal leads to the following two equa-

tions

l2 + 0.1903l1 − 0.6065 = −0.3679

0.5966l1 − 0.6065l2 = 0

with the solution

l1 = 0.2032

l2 = 0.1999

For unit gain lr should be

lr =
1

C(I − Φa + ΓaL)−1Γa
=

1

1.245
( 0.8032

d. while(1) {

y = getY();

r = getRef();

// CalculateOutput code

u = lr*r - l1*y - temp;

setOutput(u);

// UpdateState code

uold = u;

temp = l2*uold;

// Sleep code

}

7.

a. The sufficient Liu-Layland test gives that the smallest value of the period

is Tmin = 4.77. The hyperbolic schedulability test gives that Tmin = 4.5.
However, by response time analysis arguments or simply by drawing the

schedule it can easily be seen that Tmin = 4.

b. The sufficient Liu-Layland test gives that the largest value of the execution

time is Cmax = 3.1421. The hyperbolic schedulability test gives that Cmax =
3.33. However, by response time analysis arguments or simply by drawing

the schedule it can easily be seen that Cmax = 4.

c. The response time analysis formulae, i.e.,

Ri = Ci +
∑

∀ j∈hp(i)

⌈

Ri

Tj

⌉

Cj

consists of two terms. The first one is the execution time for the task itself

and the second is the amount of time that the task is preempted by higher

priority task. We can use the same approach to calculate the maximum
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starting time, however, in the analysis we should pretend that the execution

time for the task is very small, i.e., equal to ǫ, and then we let ǫ approach

zero.

Hence. the formulae for the latest possible starting time can be formulated

as

Si = ǫ+
∑

∀ j∈hp(i)

⌈

Si

Tj

⌉

Cj

If we apply this to our task set we will get the following result:

SA = ǫ

S0B = 0,S
1
B = ǫ,S2B = ǫ+ ⌈

ǫ

1
⌉0.2 = ǫ+ 0.2

S3B = ǫ+ ⌈
ǫ+ 0.2

1
⌉0.2 = ǫ+ 0.2

S0C = 0,S
1
C = ǫ,S2C = ǫ+ ⌈

ǫ

1
⌉0.2+ ⌈

ǫ

4
⌉1.2 = ǫ+ 1.4

S3C = ǫ+ ⌈
ǫ+ 1.4

1
⌉0.2+ ⌈

ǫ+ 1.4

4
⌉1.2 = ǫ+ 1.6

S4C = ǫ+ ⌈
ǫ+ 1.6

1
⌉0.2+ ⌈

ǫ+ 1.6

4
⌉1.2 = ǫ+ 1.6

If we now let ǫ go to 0 we will have that SA = 0,SB = 0.2,SC = 1.6. The
same result can also be derived by simply drawing the schedule, starting

from the critical instant.

8.

a. The following queues are involved:

• the ReadyQueue

• the TimeQueue

• the monitor queue associated with the monitor mon

• the waiting queue associated with the event (condition variable) nonFull

• the waiting queue associated with the event (condition variable) nonEmpty

b. There may be a scenario where none of the processes is blocked, i.e., the

Readyqueue may contain maximum 7 processes (8 if we also count the Idle
process).

There may be a scenario in which all the processes are sleeping, i.e., the

TimeQueue may contain maximum 7 processes.

There may be a scenario in which there is one process executing inside the

monitor and all the others are waiting for access, i.e., the monitor queue

may contain maximum 6 processes.

There may be a scenario in which all the producer processes wants to enter

a data element into a full buffer, i.e., the waiting queue associated with

nonFull may contain maximum 3 processes.

There may be a scenario in which all the consumer processes wants to ex-

tract a data element from an empty buffer, i.e., the waiting queue associated

with nonEmpty may contain maximum 4 processes.

5



9. int16_t multiply(int16_t X, int16_t Y, int16_t n)

{

int32_t Z;

Z = ((int32_t)X*Y) >> n;

if (Z > 32767)

Z = 32767 ;

if (Z < -32768)

Z = -32768;

return (int16_t)Z;

}

6


