Department of

AUTOMATIC CONTROL

LUND INSTITUTE
OF TECHNOLOGY

Lund University

Real-Time Systems
Exam January 7, 2014, hours: 14.00-19.00

Points and grades

All answers must include a clear motivation and a well-formulated
answer. Answers may be given in English or Swedish. The total number of
points is 25. The maximum number of points is specified for each subproblem.

Accepted aid

The textbooks Real-Time Control Systems and Computer Control: An Overview -
Educational Version. Standard mathematical tables and authorized “Real-Time
Systems Formula Sheet”. Pocket calculator.

Results

The result of the exam will become accessible through LADOK. The solutions
will be available on WWW:
http:/ [www.control.lth.se /course | FRTNO1/

Consider the following continuous-time triple integrator process with output
y and input u
y(t) =u(?)

. Introduce suitable continuous-time state variables and ZOH-sample the
process with A = 1. (1p)

. Compute the pulse transfer function for the discrete-time system derived
in subproblem a and determine its poles and zeros. (Hint: The general
expression for the inverse of an upper-triangular 3x3 matrix can be found
on the last page of the exam.) (1p)

Consider a discrete-time PI controller without any setpoint weighting (8 =
1).

. What is the pulse transfer function for the PI controller when the I part is
discretized using a forward difference approximation? What are the poles
and zeros? (1p)

. Implement the PI-controller using the following pseudo-code skeleton. In
order to get full points the code should be written so that the input-output

latency is minimized. Insert code at the places indicated by Make
sure that all variables are properly declared. The code need not contain any
anti-windup mechanism. (1p)

private double u = 0, y = 0, r = 0;

while (1) {
y = getY();
r = getReference();

outputU(u) ;
sleep()
}

A moving object with external force u and position y is described by the
discrete-time state-space system

(1) _(1)'8] x(k) + [(1)] u(k)

y(k) = (o 0.5] (k)

x(k+1)=[

Three different state feedback controllers
u(k) = —Lx(k)
have been designed using pole placement. Match the corresponding feedback

vectors Li—L3, pole placements A4—A¢ and initial condition responses I-III.
All answers should be carefully motivated. (2 p)

L (—1 —0.8] L2=(2 1.2] L3=(1 0.2]

ﬂA:(—l 0] AB:(O 0] ﬂcz(l 1]

I 11
2 15
1 1
5 0 5 05
e k=
8 -1 3 o
-2 -0.5
-3 -1
0 5 10 0 5 10
Time step Time step
111
15
1
2
£ 05
O
0
-0.5
0 5 10
Time step

A control system is running with a sampling time of &~ = 0.02 s. A measure-
ment disturbance enters the control loop at the sensor, causing disturbances
in the control signal.

What will be the frequency/frequencies of the disturbances in the control
signal (before the D/A converter) if

. the measurement disturbance consists of two sinusoidal components with
the frequencies 20 Hz and 550 Hz? (1p)

. the measurement disturbance contains frequencies between 20 Hz and 30
Hz? (1p)

A development team, UNI-X, at an embedded systems company was devel-
oping an application that contained three independent tasks: A, B, and C.
The application was going to be hosted on a processor which used fixed
priority scheduling. On the same processor a number of other applications
were executing, each of them containing a number of independent periodic
tasks with deadlines equal to the task periods.

The CPU resources were divided so that 39% of the CPU utilization was

reserved for the tasks in the other applications. The parameters of UNI-X’s
tasks are the following.

Task name ‘ T, | D, | G
A 6 | 6 |05
B X | x
C 12 | 12

One design goal of UNI-X is to minimize the period, x, of task B.

. What is the minimum task period for task B in order to guarantee that
the entire task set on the processor is schedulable under rate-monotonic
priority assignment and under the assumption that the kernel is ideal.

(1p)

. The achievable task period for task B was, however not enough and after
a lot of political maneuvers UNI-X were allowed to implement their tasks
on a separate processor. One of the members of the team had heard about
the fantastic EDF scheduling method. What is the minimum task period
for task B that can be achieved with EDF scheduling? (1p)

. However, the team soon found out that EDF scheduling is not so well sup-
ported in commercial real-time kernels. Therefore it was decided that the
fixed priority scheduling must be used after all. It was decided to choose
the task period of B so that the utilization of the CPU was 5/6 to have some
safety margin. What task period does this correspond to? (1p)

. Verify that the task set is schedulable with the task periods from subprob-
lem c. (1p)

Consider the following first-order continuous-time system

d’;gf) = —ax(t) + au(t — 1)
y(t) = x(2)

. Calculate the pulse transfer function for the ZOH-sampled system when
7=0. (0.5 p)

. Calculate the pulse transfer function for the ZOH-sampled system when
T=h. (0.5 p)

. Calculate the pulse transfer function for the ZOH-sampled system when
0<7<h. (0.5 p)

In Fig. 1 you can see a state machine. Convert the state machine into a
Grafcet diagram. (2 p)

In Laboratory 1 some students suspected that there was an error in the
GUI which sometimes caused incorrect PID parameters to be set. Thus, to
be safe, the PID class was modified so that requested parameter changes
must be approved by the user before they were applied:

// PID.java

public PID(...) {
/] ...
setParameters(p);

}

public synchronized double calculateOutput(double y, double r) {
/...

}

start —

Figure 1 State machine

public synchronized void updateState(double u) {
/...
}
public synchronized void setParameters(PIDParameters p) {
System.out.println("Got new parameters:");
printParameters();
System.out.println("Apply these parameters? (Y/N)");
if (getUserConfirmation()) {
this.p = (PIDParameters)p.clone();
// ... update ad and bd
}
}

. An unexpected side effect of the new implementation is that the controller
thread (Regul) sometimes does not work. When and why? Modify the code
to fix this issue. (1.5 p)

. Mention at least two additional issues introduced by the new setParameters ()
(possibly related to the fix in the previous problem) and discuss possible
solutions. (1p)

We are writing C code using fixed point variables. The variable fixX con-
tains the value of x with nx fractional bits, the variable fixY contains the
value of y with no fractional bits and the variable fixZ contains the value
of z with nz fractional bits. We know that nx >= nz is true.

We want to calculate the value of x - y + z with zero fractional bits. For each
of the following snippets of C code, say if it will calculate the value correctly

10.

11.

or not. If not, motivate your answer.

A. (fixX * fixY + (fixZ << (nx - nz)) >> nx

B. (fixX >> nx) * fixY) + (fixZ >> nz)

C. (((fixX * fixY) >> (nx - nz)) + fixZ) >> nz
D. (((fixX * fixY) >> nx) + fixZ) >> nz

For a calculation to be considered correct we want to keep all the precision,
but we are fine with always rounding the final value down. You may assume
that there is always enough bits for intermediate values and final results.

(2p)

A Petri net is deadlock-free if there is always at least one transition that
may be fired. A Petri net is live if no transition can become unfireable. A
Petri net is bounded of there is an upper bound on the number of tokens in
the net. A Petri net that is live is also deadlock-free. A Petri net that is not
deadlock-free is is not live either.

For each of the Petri nets in Fig. 2 determine if it is a syntactically correct
Petri net? If it is syntactically correct then also decide if it is deadlock-free,
if it is live, and if it is bounded? Motivate your answers briefly.

(a) (e)

(b)

Figure 2 Petri nets

(3 p)

In java.util.concurrent a number of synchronization mechanisms are
available. One of them is the countdown latch. A countdown latch is a syn-
chronization mechanism that allows one or more threads to wait until a set
of operations being performed in other threads completes.

The countdown latch is implemented by the Java class CountDownLatch.
A CountDownLatch is initialized with a given count. The await () method
causes the calling thread to wait until the current value of count is equal
to zero. The value of count is decremented using the method countDown ().
When the value reaches zero all waiting threads are released. The latch
may not be reset, i.e., further attempts to decrement the counter once it
has reached zero, will have no effect and calls to await() once the latch
has triggered will return immediately. The method getCount () returns the
current value of count.

A CountDownLatch can be used for a number of purposes. A CountDownLatch
initialized with a count of one serves as a simple on/off latch, or gate: all
threads invoking await() wait at the gate until it is opened by a thread
invoking countDown (). A CountDownLatch initialized to N can, e.g., be used
to make one or several threads wait until N threads have completed some
action (e.g., N threads that each call countDown () once), or some action has
been completed N times (e.g., one thread that calls countDown() N times)
A slightly simplified version of the interface to the CountDownLatch class is:

public class CountDownLatch {
public CountDownLatch(int count);
public void await();
public void countDown() ;

public int getCount();
}

Since the countdown latch is so simple it is straightforward to implement
it using the Java synchronization mechanisms that are part of the course
(synchronized, wait (), notify () and notifyAl1(Q)).

Implement the class CountDownLatch with the interface and semantics de-
scribed above (You may add modifier keywords to the method signatures).
Your implementation should be safe towards spurious wakeups, i.e., if, for
some awkward reason, a thread is released although the count is greater
than zero it should wait anew. Correct handling of exceptions is not re-
quired. (2 p)

The inverse of an upper-triangular 3x3 matrix

If
a b ¢
A=1|0 d e
0 0 f

then, assuming that the matrix is invertible, the inverse is given by

df —bf (be—cd)
= W 0 «af —ae
0 0 ad

A—l

