
Concurrent Programming

Real-Time Systems, Lecture 2

Martina Maggio

18 January 2018

Lund University, Department of Automatic Control

www.control.lth.se/course/FRTN01

Content

[Real-Time Control System: Chapter 3]

1. Implementation Alternatives

2. Concurrent Programming

2.1 The need for synchronization

2.2 Processes and threads

2.3 Implementation

1

Implementation Alternatives

Historical Implementation Alternatives

Historically, controllers have been implemented in many ways:

• mechanical techniques;

• discrete analog electronics;

• discrete digital electronics.

These techniques are no longer used in industrial practice.

2

Current Implementation Alternatives

P
er
fo
rm

an
ce
,
P
ow

er
,
E
ffi
ci
en
cy

Application Specific Integrated Circuits

System on Chip

Programmable Hardware

(Field Programmable Gate Arrays)

Special Purpose Processors

(Microcontrollers, Digital Signal Processors)

General Purpose Processors

(Multicores, Manycores)

F
le
xi
b
ili
ty

3

Microcontroller

• A small and cheap “computer on a chip”.

• In 2015, 8-bit microcontrollers cost $0.311 (1,000 units), 16-bit

$0.385 (1,000 units), and 32-bit $0.378 (1,000 units but at $0.35 for

5,000)1 .

• A typical home in a developed country is likely to have 4

general-purpose microprocessors and more than 35 microcontrollers.

• A typical mid-range automobile has at least 30 microcontrollers.

• Contains: a processor core, memory and input/output peripherals.

1Numbers from https://en.wikipedia.org/wiki/Microcontroller and

http://www.icinsights.com/news/bulletins/MCU-Market-On-Migration

-Path-To-32bit-And-ARMbased-Devices/.

4

Small Microcontrollers

• Limited program memory.

• Limited data memory.

• Optimized interrupt latency:

• main program and interrupt handlers;

• (periodic) timers;

• periodic controllers implemented in (timers) interrupt handlers;

• limited amount of timers.

5

Large Microcontrollers

• Large amount of memory on chip.

• External memory available.

• Real-time kernel supporting multiple threads

(and concurrent programming).

6

Multicores

• Single computing entity with two or more processor cores2.

• Shared memory, tasks running on each of the cores can access data.

Shared cashes, partitioned cashes or separate ones.

• Concurrency should be taken into account.

2Multicores typically have from 2 to 16 cores, many-cores exceed 16 cores, see

http://www.argondesign.com/news/2012/sep/11/multicore-many-core.

7

Concurrent Programming

Concurrency

Concurrency is not parallelism3:

when people hear the word concurrency they often think of parallelism, a

related but quite distinct concept. In programming, concurrency is the

composition of independently executing processes, while parallelism is the

simultaneous execution of (possibly related) computations.

3http://blog.golang.org/concurrency-is-not-parallelism, http://vimeo.com/49718712

8

Concurrent Programming

Concurrent execution can take three different forms:

• (1) Multiprogramming: the processes multiplex their execution on

a single processor

• (2) Multiprocessing: the processes multiplex their execution on

tightly coupled processors (processors sharing memory)

• (3) Distributed processing: the processes multiplex their execution

on loosely coupled processors (not sharing memory)

Concurrency, or logical parallelism: (1); Parallelism: (2) and (3)

9

Concurrent Programming

Logical Concurrency

Task A

Task B

Task C

Time Sharing Concurrency

Context Switch

10

Concurrent Programming – Approaches

• Real-Time Operating Systems (RTOS)

- Sequential Languages (like C) with real-time primitives

- Real-Time kernel for process handling

• Real-Time Programming Languages (like Ada)

- The language itself or its runtime kernel provides

the functionality of a real-time kernel

11

Real-Time Programming

Processes

A

B

C

Real-Time Programming requires:

• Notion of processes

• Process synchronization

• Inter-process communication (IPC)

12

Processes – Memory Models

• Shared address space:

it means that all the processes can access variables that are global in

the address space (requires some care),

lightweight processes or threads:

less status information, less switching overhead

• Separate address space:

it needs explicit ways to handle data that should be shared among

the running processes (for example message passing)

13

Processes vs Threads

Process1

Threads

Process2

Process3

Scheduler

Windows, Solaris, . . .

Some opearting systems like Windows provide support for threads within

processes. Linux does not differentiate between processes and threads.

14

Process States

Running Ready

Blocked

waiting event

• Ready — The process is ready to execute.

• Running — The process is currently executing.

• Blocked — The process is waiting for an event.

15

Context Switches

A context switch takes place when the system changes the running

process (thread). The context of the process that is currently occupying

the processor is stored and the context of the new process to run is

restored.

The context consists in:

• the stack;

• the content of the programmable registers;

• the content of the status registers.

16

Priority

Each process is assigned a priority number that reflects the importance

of its execution demands. The interval of possible priorities can vary, and

they can be ordered from low numbers to high or from high numbers to

low.

• STORK: low priority number = high priority

(range 1 to max integer)

• Java: high priority number = high priority

(range 1 to 10)

• Linux: high priority number = high priority

(range 0, 1–99 and 100 depending on the scheduler)

17

Priority

Processes that are ready to execute are stored in the ready queue

according to their priorities.

P1 P2 P3 P4

Higher priority

Running

18

Multicore Case

Two alternatives:

• global scheduling: a single ready queue with running processes.

P1 P2 P3 P4

Higher priority

Running 1 Running 2

• partitioned scheduling:

• one ordinary ready queue per core;

• often combined with the possibility to move (migrate) processes.

19

Preemption

A change in the ready queue may lead to a context switch. If the change

(insertion, removal) results in a different process being the first in queue,

the context switch takes place. Depending on the scheduler, this can

happen in different ways:

• preemptive scheduling: the context switch takes place immediately

(the running process is preempted), it happens in most real-time

operating systems and languages (STORK, Java);

• non-preemptive scheduling: the running process continues until it

voluntarily releases the processor, then the context switch takes

place;

• preemption-point based scheduling: the running process continues

until it reaches a preemption point, then the context switch takes

place, it was the case in early versions of Linux (no preemption in

kernel mode).

20

Assigning Priorities

Assigning priorities is non-trivial, requires global knowledge. Two ways:

• ad hoc rules:

important time requirements =⇒ high priority

time consuming computations =⇒ low priority

conflicts, no guarantees;

• scheduling theory:

often it is easier to assign deadlines than priorities.

21

Dynamic Priorities

Priority-based scheduling is fixed-priority, the priority of a process is

fixed a priori. It may be better to have systems where it is the closeness

to a deadline to decide which process should be executed: earliest

deadline first (EDF) scheduling. The deadline can then be viewed as a

dynamic priority that changes as the time proceeds (still unusual in

commercial systems).

22

Process Representation

A process consists of:

• the code to be executed:

in Java this is the run method;

• a stack:

local variables of the process, arguments and local variables of

procedures called by the process, (when suspended) storage space

for the values of the programmable registers and program counter;

• a process record (process control block, task control block):

administrative information, priority, a pointer to the code of the

process, a pointer to the stack of the process, etc.

23

Memory Organization

MODULE Main;

VAR x, z: INTEGER;

y: POINTER TO INTEGER;

PROCEDURE Demo(a: INTEGER, b: INTEGER): INTEGER;

VAR Result: INTEGER;

BEGIN

Result := a*b - b*b;

RETURN Result;

END Demo;

BEGIN

x := 2;

NEW(y);

y^ := 7;

z := Demo(x, y^);

Write(z);

DISPOSE(y);

END Main.

Stack Growing stack direction

Stack pointer
. . .

Heap

Heap end

7
Heap start

Data area

x:=2
y

z

tree-list

Code for Module MainProgram area Program counter

24

Demo is called

When the Demo procedure is called, a stack frame is created and the

parameters and the return value and address are given stack space.

When the function executes, it can allocate local variables in the stack.

When the procedure is terminated, the stack is cleared, the return values

is returned and the program counter is set to the return address.

Growing stack direction

Stack pointer

b

a

Return value

Return address

Parameters

ResultLocal variables

25

[STORK] Memory Organization: Concurrency

Process A is executing

Process B is suspended

MODULE Main;

(* Process *) PROCEDURE ProcessA();

(* Local variable declarations *)

BEGIN

LOOP

Code for ProcessA;

END;

END ProcessA;

(* Process *) PROCEDURE ProcessB();

(* Local variable declarations *)

BEGIN

LOOP

Code for ProcessB;

END;

END ProcessB;

(* Global variable declarations *)

BEGIN

(* Code for creating process A and B *)

Wait statement;

END Main.

Stack

Growing stack direction

. . .
Heap end

Heap start

Heap

Process A

Process B
Process B Stack

Process A Stack
Stack pointer

Global data area

Code for Module MainProgram area Program counter

26

[STORK] Process

TYPE

PROCESS = ADDRESS;

ProcessRef = POINTER TO ProcessRec;

Queue = POINTER TO QueueRec;

QueueRec = RECORD

succ, pred : ProcessRef;

priority : Cardinal;

nextTime : Time;

END;

ProcessRec = RECORD

head : QueueRec;

procv : PROCESS;

timer : CARDINAL;

stack : ADDRESS;

stackSize : CARDINAL;

END;

succ

pred

. . .
head:

ProcessRec

QueueRec

procv

timer

stack

stackSize

. . .

stackpointer

. . .

Modula2 record

In the global data area, there are two pointers: ReadyQueue (pointer to a

double linked list of processes that are ready to run) and running

(pointer to the currently running process). For each process:

• pointers part of head (QueueRec): successor and predecessor;

• procv points to the Modula2 process record;

• timer is used for round robin slicing.
27

[STORK] Process Creation

Procedure CreateProcess(proced: PROC, memReq: CARDINAL,

name: ARRAY OF CHAR);

BEGIN

CreateProcess(ProcessA, 2000, "Process A");

CreateProcess(ProcessB, 2000, "Process B");

...

END Main.

• Creates a process from the procedure proced;

• memReq: maximum memory bytes required by the process stack;

• name: used for debugging purposes.

The call initializes the process record, creates the process calling the

Modula-2 primitive NEWPROCESS, allocates memory on the heap, set the

process priority to 1 (highest priority), and insert the process into the

ReadyQueue.

28

[STORK] Context Switching

Initiated by a call to Schedule

• directly by the running procedure;

• from within an interrupt handler.

It happens when:

• the running process voluntarily releases the CPU;

• the running process performs an operation that may cause a blocked

process to become ready;

• an interrupt has occurred, which may have caused a blocked process

to become ready.

29

[STORK] Schedule

PROCEDURE Schedule;

VAR

oldRunning : ProcessRef;

oldDisable : InterruptMask;

BEGIN

oldDisable := Disable(); (* Disable interrupts *)

IF ReadyQueue^.succ <> Running THEN

oldRunning := Running;

Running := ReadyQueue^.succ;

TRANSFER(oldRunning^.procv, Running^.procv);

END;

Reenable(oldDisable);

END Schedule;

Operations:

• interrupts are disabled;

• the actual context switch takes

place in the Modula-2 primitive

TRANSFER

• using the Modula-2 process

record pointer as argument;

• interrupts are enabled again.

TRANSFER is entered in the context of one process and left in the context

of another process.

30

[STORK] Inside TRANSFER

Operations performed by the TRANSFER procedure:

• Saving: the state of the processor immediately before the switch is

saved on the stack of the suspended process;

• Switching: the context switch operations

– the value of the stack pointer is stored in the process record of the

suspended process,

– the stack pointer is set to the value that is stored in the process

secord of the new process;

• Restoring: the state of the resumed process is restored (popped

from its stack).

31

Hyperthreading

Many new architectures support hyperthreading:

• the processor registers are duplicated;

• one set of registers is used for the thread currently being executed,

the other set (in case of two hyperthreads) is used for the thread

that is next to be executed (next-highest priority);

• when context switching between these two, no need for saving and

restoring the context;

• the processor only need to change the set of registers that it

operates upon, which takes substantially less time.

32

[JAVA] Java in Real-Time

Three possibilities:

• Ahead-Of-Time (AOT) compilation

– java or java bytecode to native code

– java or java bytecode to intermediate language (C)

• Java Virtual Machine (JVM)

– as a process in an existing OS (green thread model: the thread are

handled internally by the JVM – vs – native thread model: the java

threads are mapped onto the threads of the operating system)

– executing on an empty machine (green thread model)

• direct hardware support (for example throug micro-code)

33

[JAVA] Execution Models

• Ahead-Of-Time compilation works essentially as STORK.

• JVM with native thread model:

– each java thread is executed by a native thread,

– similar to what seen for STORK.

34

[JAVA] Execution Models

• JVM with green thread model:

– threads are abstractions inside the JVM,

– the JVM holds within the thread objects all information related to

threads (the thread’s stack, the current instruction, bookkeeping

information),

– the JVM performs context switching between threads by saving and

restoring the contexts,

– the JVM program counter points at the current instruction of the

running thread,

– the global program counter points at the current instruction of the

JVM.

35

[JAVA] Thread Creation

A thread can be created in two ways:

• by defining a class that extends (inherits from) the Thread class,

• by defining a class that implements the runnable interface (defines

a run method).

The run method contains the code that the thread executes.

The thread is started by a call to the start method.

36

[JAVA] Thread Creation extending Thread

public class MyThread extends Thread {

public void run() {

// Here goes the code to be executed

}

}

Thread Start:

MyThread m = new MyThread();

m.start();

37

[JAVA] Thread Creation implementing Runnable

Used when the object needs to extend some other class than Thread

public class MyClass extends MySuperClass implements Runnable {

public void run() {

// Here goes the code to be executed

}

}

Thread Start:

MyClass m = new MyClass();

Thread t = new Thread(m);

t.start();

Drawback: non-static thread methods are not directly accessible inside

the run method.

38

[JAVA] Thread Creation: threads as variables

public class MyThread extends Thread {

MyClass owner;

public MyThread(MyClass m) {

owner = m;

}

public void run() {

// Here goes the code to be executed

}

}

public class MyClass extends MySuperClass {

MyThread t;

public MyClass() {

t = new MyThread(this);

}

public void start() {

t.start();

}

}

Makes it possible for an active object to contain multiple threads. The

thread has a reference to the owner (not elegant). 39

[JAVA] Thread Creation: threads as an inner class

public class MyClass extends MySuperClass {

MyThread t;

class MyThread extends Thread {

public void run() {

// Here goes the code to be executed

}

}

public MyClass() {

t = new MyThread();

}

public void start() {

t.start();

}

}

No owner reference needed. MyThread has direct access to variables and

methods of MyClass. The inner class is anonymous.

40

[JAVA] Thread Priorities

A new thread inherits the priority of the creating thread. The default

priority is NORM PRIORITY equal to 5. Thread priorities can be changed

calling the nonstatic Thread method setPriority.

public class MyClass implements Runnable {

public void run() {

Thread t = Thread.currentThread();

t.setPriority(10);

// Here goes the code to be executed

}

}

The static currentThread method is used to get a reference to thread

of MyClass.

41

[JAVA] Thread Termination

A thread terminates when the run method terminates. To stop a thread

from some other thread it is possible to use a flag.

public class MyClass implements Runnable {

boolean doIt = true;

public void run() {

while (doIt) {

// Here goes the code to be executed periodically

}

}

}

The thread is stopped by setting the doIt flag to false, either directly or

providing some access method provided by MyClass. Sleeping threads will

not terminate immediately.

42

[LINUX] Scheduling in Linux

Four scheduling classes (schedulers):

• SCHED OTHER (previously called SCHED NORMAL)

– default scheduler

– from 2.6.23 based on the Completely Fair Scheduler (CFS)

– not a real-time scheduler

– round robin-based

– fairness and efficiency are major design goals

– tradeoff between low lantecy (for example for input/output bound

processes) and high throughput (for example for compute bound

processes)

– threads scheduled with this scheduler have priority 0

43

[LINUX] Scheduling in Linux

Four scheduling classes (schedulers):

• SCHED RR

– round robin

– real-time scheduler

– threads scheduled with this scheduler have priority always higher

than threads scheduled with SCHED NORMAL

– increasing priorities from 1 to 99

– after a quantum the thread releases the CPU to the scheduler and

the scheduler assigns it to the highest priority ready thread

• SCHED FIFO

– works as SCHED RR but the thread does not release the CPU until

termination

44

[LINUX] Scheduling in Linux

Four scheduling classes (schedulers):

• SCHED DEADLINE

– added in Linux 3.14 (as a result of the EU project ACTORS led by

Ericsson in Lund and with the Department of Automatic Control as

partner)

– Earliest-Deadline First scheduler

– support for CPU reservations

– threads scheduled with this scheduler have priority 100 (highest) –

“if any SCHED DEADLINE thread is runnable, it will preempt any

thread scheduled under one of the other policies”4

4http://man7.org/linux/man-pages/man7/sched.7.html

45

