	Content
Introduction to Real-Time Systems	[Real-Time Control System: Chapter 1, 2]
Real-Time Systems, Lecture 1	1. Real-Time Systems: Definitions
Martina Maggio and Karl-Erik Årzén 16 January 2018	2. Real-Time Systems: Characteristics
Lund University, Department of Automatic Control	3. Real-Time Systems: Paradigms
	Real-Time Systems
	Keal-Time Systems
Real-Time Systems: Definitions	"Any information processing system which has to responde to externally generated input stimuli within a finite and specified period" "Real-Time systems are those in which the correctness of the system depends not only on the logical results of the computation but also on the time at which results are produced"
Definitions	2 Real-Time and Control
A <i>hard real-time</i> system is a system where it is absolutely imperative that the responses occur within the required deadline (for example because in <i>safety-critical applications</i> in aerospace, automotive and so on). A <i>soft real-time</i> system is a system where deadlines are important, but where the system still functions if the deadlines are occasionally missed (for example in multimedia systems, user interfaces and so on).	Control-Engineering Real-Time Systems
3	 All control systems are real-time systems. Many hard real-time systems are control systems.

Hard Real-Time Systems

- Control engineers need real-time systems to implement their systems.
- Computer engineers need control theory to build 'controllable systems'.
- Interesting research problems in the interface.

• The focus of this course.

- Many (most?) hard real-time systems are real-time control systems.
- Most real-time control systems are **not** hard real-time systems.
- Many hard real-time systems are safely-critical.
- Common misconception: Real time equals high-speed computations. This is not true. Real-time systems execute at a speed that makes it possible to fulfill the timing requirements.

Real-Time Control Systems

Real-Time Control Systems

5

7

9

Two types of real-time control systems:

- Embedded systems:
 - dedicated control system
 - $-\,$ the computer is an embedded part of some equipment
 - microprocessors, real-time kernels, RTOS
 - aerospace, industrial robots, vehicular systems
- Industrial control systems:
 - distributed control systems (DCS)
 - programmable logic controllers (PLC)
 - hierarchically organized
 - process industry, manufacturng industry

Example

Products relying on embedded control

Some more

10

6

8

Example

In a modern car

code;

buses.

• Embedded control systems: brakes, transmission, engine, safety,

climate, emissions: 40-100 ECUs in a new car, 2-5 milion lines of

• Networked systems: VOLVO XC 90 has 3 CAN-buses and other

Networked Control

Example: Modern Cars

Embedded control systems in modern car (brakes, transmission, engine, safety, climate, emissions, ...)

Sampled-Data Control Systems

Networked Control Systems

Ideal Controller Timing

22

24

26

Sampled control-design:

Design Approaches

- Discrete-time design,
- Use a model of the plant that only describes the behaviour at the sampling instants sampling the system.

Approximation of a continuous-time design:

- Design the controller assuming a continuous-time implementation,
- Approximate this controller by a discrete-time controller.

- Output y(t) sampled periodically at time instants $t_k = kh$,
- Control u(t) generated after short and constant time delay τ .

Real Controller Timing

- Control task τ released periodically at time instances $r_k = kh$,
- Output y(t) sampled after time-varying sampling latency L_s ,
- Control u(t) generated after time-varying input-output latency L_{io} .

Non-Deterministic Timing

Caused by sharing of computing resources:

- multiple tasks sharing the CPU,
- preemptions, blocking, priority inversion, varying computation times, and so on.

Caused by sharing of network bandwidth:

- control loops closed over communication networks,
- network interface delay, queuing delay, transmission delay, propagation delay, resending delay, ACK delay,
- lost packets.

How can we minimize the non-determinism?

How does the non-determinism effect control performance?

23

25

Events
<text><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></text>
Real-Time Systems: Paradigms
Sequential Programming
<figure> Design Design Cyclic Executive CPU Execution Evel</figure>

Interleaved Code	Static Sequential Approaches
Interleaved temperature and level loops while (true) { "While (level above L0) { "Measure temperature; "Galculate temperature error; "Calculate temperature error; "Galculate temperature; "While (level below L1) { "Measure temperature; "Galculate temperature error; "Galculate temperature; "While (level below L1) { "Measure temperature; "Galculate the heater signal; "Wait for h seconds; "Open inlet valve; "While (level below L1) { Measure temperature; "Galculate temperatur	Advantages: • determinism, • a lot of different constraints can be ensured, • simple real-time computing platforms may be used. Disadvantages: • inflexible, • generation of the sequential process can be a difficult optimization problem.
Concurrent Programming	Real-Time Operating Systems
Design Level Concurrent Tasks Crut Execution Level The CPU is shared between the processes (switches).	 Switches between processes (real-time kernel), Timing primitives and interrupts, Process communication, CPU free to service other tasks. Temperature Loop with Sleep while (rup) { Measure imperature: Calculate temperature: Calculate temperature signal; Sleep(h);
<text><text><code-block></code-block></text></text>	 36 Real-Time Systems Characteristics Timing requirements, Must be deterministic and predictable, Worst-case response times of interest rather than average-case, Large and complex, Distributed, Tight interaction with hardware, Safety critical, Execution is time dependent, Testing is difficult, Operating over long time periods.
37	38

Real-Time Systems Course	Java in real-time – NO
<text><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></text></text>	 Java was not developed for real-time applications. The just-in-time compilation in Java and the dynamic method dispatching makes Java non-deterministic and slow. The automatic garbage collection makes Java execution non-deterministic. Java lacks many important real-time primitives.
Java in real-time – YES	
 A nice concurrent programming language. A nice object-oriented language. A nice teaching language. Strong trends towards Real-Time Java. Many of the shortcomings of Java can be handled, e.g., the garbage collection problem. Microsoft's .NET and C# (a Java clone) + Google's Android has strongly increased the industrial use of Java. 	