
Introduction to Real-Time Systems

Real-Time Systems, Lecture 1

Martina Maggio and Karl-Erik Årzén

16 January 2018

Lund University, Department of Automatic Control

Content

[Real-Time Control System: Chapter 1, 2]

1. Real-Time Systems: Definitions

2. Real-Time Systems: Characteristics

3. Real-Time Systems: Paradigms

1

Real-Time Systems: Definitions

Real-Time Systems

“Any information processing system which has to responde to externally

generated input stimuli within a finite and specified period”

“Real-Time systems are those in which the correctness of the system

depends not only on the logical results of the computation but also on

the time at which results are produced”

2

Definitions

A hard real-time system is a system where it is absolutely imperative that

the responses occur within the required deadline (for example because in

safety-critical applications in aerospace, automotive and so on).

A soft real-time system is a system where deadlines are important, but

where the system still functions if the deadlines are occasionally missed

(for example in multimedia systems, user interfaces and so on).

3

Real-Time and Control

Control-Engineering Computer Engineering

Real-Time Systems

• All control systems are real-time systems.

• Many hard real-time systems are control systems.

4

• Control engineers need real-time systems to implement their systems.

• Computer engineers need control theory to build ‘controllable

systems’.

• Interesting research problems in the interface.

5

Hard Real-Time Systems

• The focus of this course.

• Many (most?) hard real-time systems are real-time control systems.

• Most real-time control systems are not hard real-time systems.

• Many hard real-time systems are safely-critical.

• Common misconception: Real time equals high-speed computations.

This is not true. Real-time systems execute at a speed that makes it

possible to fulfill the timing requirements.

6

Real-Time Control Systems

Computer Control System

Controller Controlled System

Industrial

Process

Operator

Interface

Communi-

cation

ActuatorsD/A

SensorsA/D

7

Real-Time Control Systems

Two types of real-time control systems:

• Embedded systems:

– dedicated control system

– the computer is an embedded part of some equipment

– microprocessors, real-time kernels, RTOS

– aerospace, industrial robots, vehicular systems

• Industrial control systems:

– distributed control systems (DCS)

– programmable logic controllers (PLC)

– hierarchically organized

– process industry, manufacturng industry

8

Example

9

Some more

10

Example

In a modern car

• Embedded control systems: brakes, transmission, engine, safety,

climate, emissions: 40-100 ECUs in a new car, 2-5 milion lines of

code;

• Networked systems: VOLVO XC 90 has 3 CAN-buses and other

buses.

11

Networked Control

12

Networked Control

13

Cyber-Physical Systems

• Name coined in the US around 2008.

• Denotes systems with a very tight connection between computing,

communication, control and the physical world.

CPS

Computing

Communication

Physical worldControl

14

CPS Examples

• Smart/Green/Low-energy buildings: require interaction between

architects, mechanical engineers and control engineers; require

interaction between a number of subsystems (cooling, lightning,

security);

• Green cars;

• Smart Power Grids;

• Server Farms/Data Centers: require interaction between load

balancing and energy consumption;

• Battery-driven computing and communication devices (like smart

phones, laptops and sensor networks);

• Cross-layer design and optimization in networks: in embedded

systems resource-aware design.

15

Real-Time Systems: Characteristics

Embedded Control Characteristics

• Limited computing and communication resources:

– often mass-market products, like cars

– CPU time, communication bandwidth, energy, memory

• Autonomous operation:

– No human operator in the loop

– Several use-cases and complex functionality, often large amount of

software

– need for formal guarantees

16

Embedded Control Characteristics

Limited Resources =⇒ Efficiency

• Code-size efficiency

• Run-time efficiency

• Energy efficiency

• Weight and size efficiency

• Cost efficiency

Autonomous operations =⇒ Dependability

• Reliability

• Availability

• Safety

• Security

• Maintainability

17

Example: The Buffer Tanks

T

Q

L
1

L
0

V

Raw Material and Heating

Goals:

• Level control: open V when level below L0, keep the valve open

until level above L1,

• Temperature control: PI-controller.

18

Typical Characteristics

• Parallel activities.

• Timing requirements: more or less hard.

• Discrete and analog signals.

• Continuous (time-driven) control and

Discrete (event-driven) sequential control.

19

Continuous Time-Driven Control

Controller on continuous (analog form)

• PI controller

u(t) = K ((yref (t)− y(t)) +
1

Ti

∫ t

(yref (τ) − y(τ))dτ)

Can be implemented in several ways, e.g., using analog electronics

Here, we will assume that it is implemented using a computer.

How, should this be done?

20

Sampling - Control - Actuation

Frequently:

• Sampling of measured signal y(t),

• Calculation of control signal (software algorithm),

• Actuation of calculated control signal u(k).

In most cases periodically, i.e. driven by a clock (time).

21

Sampled-Data Control Systems

Process

u t()

)

uk

y t(u t()

yk

SamplerHold

Computer

uk

yk

tt

t

y t()

t

D-A A-D

22

Networked Control Systems

uk

uk

k
y

k
y

Communication network

Computer

Process

y(t).
u(t)

t

.

and
D−A

Hold

Sampler

A−D
and

y(t)u(t)

. . . .
t

. .
. .

.. . .
t

t

23

Design Approaches

Sampled control-design:

• Discrete-time design,

• Use a model of the plant that only describes the behaviour at the

sampling instants – sampling the system.

Approximation of a continuous-time design:

• Design the controller assuming a continuous-time implementation,

• Approximate this controller by a discrete-time controller.

24

Ideal Controller Timing

y

 y(tk−1)

 y(tk)

 y(tk+1)

Time

u

 t k−1 t k tk+1

 u(tk− 1)

 u(t k)

Time
C

o
n

tr
o
l

V
a

ri
a

b
le

M
e
a

su
re

d
 V

a
ri

a
b

le

Computa-
tional
lag τ

• Output y(t) sampled periodically at time instants tk = kh,

• Control u(t) generated after short and constant time delay τ .

25

Real Controller Timing

y(t)

u(t)

rk−1 rk rk+1

Lk−1
s Lk−1

io Lks Lkio Lk+1
s Lk+1

io

sk−1 fk−1 sk fk sk+1fk+1

Rk−1 Rk Rk+1

τ

t

t

• Control task τ released periodically at time instances rk = kh,

• Output y(t) sampled after time-varying sampling latency Ls ,

• Control u(t) generated after time-varying input-output latency Lio .

26

Non-Deterministic Timing

Caused by sharing of computing resources:

• multiple tasks sharing the CPU,

• preemptions, blocking, priority inversion, varying computation times,

and so on.

Caused by sharing of network bandwidth:

• control loops closed over communication networks,

• network interface delay, queuing delay, transmission delay,

propagation delay, resending delay, ACK delay,

• lost packets.

How can we minimize the non-determinism?

How does the non-determinism effect control performance?

27

Discrete Event-Driven Control

Event-driven:

• wait for a condition to become true or an event to occur,

• perform some actions,

• wait for some new conditions.

The event can be a clock-tick.

Often modeled using state machine/automata-based formalisms.

In many cases implemented using periodic sampling.

28

Events

Real-Time systems must respond to events.

• Periodic events,

• Non-periodic events,

• Aperioduc events: unbounded arrival frequency,

• Sporadic events: bounded arrival frequency.

Events can be external or internal.

Each event requires a certain amount of processing and has a certain

deadline.

29

Parallelism

The real world is parallel.

Events may occur at the same time.

The work that has to be done to service an event is called the task

associated with the event.

It is often natural to handle the different tasks independently during

design.

30

Real-Time Systems: Paradigms

Parallel Multi-Core Programming

Design
Level

Execution
Level

Concurrent Tasks

CPU

CPU

CPU

Program

Program

Program

31

Sequential Programming

Design
Level

Execution
Level

Manual interleaving

CPU

Cyclic Executive

Sequential Program

32

Interleaved Code

Interleaved temperature and
 level loops

while (true) {
 while (level above L0) {
 Measure temperature;
 Calculate temperature error;
 Calculate the heater signal with PI-control;
 Output the heater signal;
 Wait for h seconds;
 }
 Open inlet valve;
 while (level below L1) {
 Measure temperature;
 Calculate temperature error;
 Calculate the heater signal with PI-control;
 Output the heater signal;
 Wait for h seconds;
 }
 Close inlet valve;
}

Complex and non user-friendly code – Can often be automated.

Sequential programme = static schedule (cyclic executive).

33

Static Sequential Approaches

Advantages:

• determinism,

• a lot of different constraints can be ensured,

• simple real-time computing platforms may be used.

Disadvantages:

• inflexible,

• generation of the sequential process can be a difficult optimization

problem.

34

Concurrent Programming

Design
Level

Execution
Level

Concurrent Tasks

Concurrent Processes

CPU

The CPU is shared between the processes (switches).

35

Real-Time Operating Systems

• Switches between processes (real-time kernel),

• Timing primitives and interrupts,

• Process communication,

• CPU free to service other tasks.

Temperature Loop with Sleep

while (true) {
 Measure temperature;
 Calculate temperature error;
 Calculate the heater signal with PI-control;
 Output the heater signal;
 Sleep(h);
 }

36

Non-Real-Time Operating Systems

• Polling (inefficient).

Polled Temperature Loop

Polling

while (true) {
 Measure temperature;
 Calculate temperature error;
 Calculate the heater signal with PI-control;
 Output the heater signal;
 counter = 0;
 while (counter < hcount) {
 INC(counter);
 }
}

37

Real-Time Systems Characteristics

• Timing requirements,

• Must be deterministic and predictable,

• Worst-case response times of interest rather than average-case,

• Large and complex,

• Distributed,

• Tight interaction with hardware,

• Safety critical,

• Execution is time dependent,

• Testing is difficult,

• Operating over long time periods.

38

Real-Time Systems Course

In this course, as in most of industry, we will follow the concurrent

programming paradigm.

Two different environments will be used during the lectures:

• Java

• concurrency through Java threads,

• language used in projects.

• STORK

• real-time kernel implemented in Modula-2,

• close in nature to commercial real-time kernels and real-time

operating systems (OS),

• makes it possible to teach how a real-time kernel is implemented.

39

Java in real-time – NO

• Java was not developed for real-time applications.

• The just-in-time compilation in Java and the dynamic method

dispatching makes Java non-deterministic and slow.

• The automatic garbage collection makes Java execution

non-deterministic.

• Java lacks many important real-time primitives.

40

Java in real-time – YES

• A nice concurrent programming language.

• A nice object-oriented language.

• A nice teaching language.

• Strong trends towards Real-Time Java.

• Many of the shortcomings of Java can be handled, e.g., the garbage

collection problem.

• Microsoft’s .NET and C# (a Java clone) + Google’s Android has

strongly increased the industrial use of Java.

41

