
Real-Time Systems

Laboratory 2: Sequence Control

Solenoid 1 Solenoid 2

Solenoid 3

Solenoid 4

Colour
Sensor

Bead
Sensor

SORTER

Black bead compartment Yellow bead compartment

Karl-Erik Årzén, Rasmus Olsson,
Mattias Grundelius, Vanessa Romero Segovia,

Alfred Theorin
Department of Automatic Control

Lund University
July 2014

Introduction

Preparatory exercise 0:

Read through the laboratory manual carefully.

Sequence Control

The topic of the laboratory is sequence control of a bead sorter process
using Grafcet/SFC. Although a toy, the bead sorter process contains many
of the control problems found in discrete manufacturing control applica-
tions. A Grafcet/SFC/Grafchart editor and execution environment called
JGrafchart is used to implement the sequence control.
SFC (Sequential Function Chart) defined in the IEC 848 standard is a
graphical programming language used for PLCs (Programmable Logic
Controllers). It is one of the five languages defined in IEC 61131-3 stan-
dard. The SFC inherits its characteristics from the French standard
Grafcet which itself is based on Petri nets.
The basic concepts of this discrete system model are steps, actions, tran-
sitions, and conditions associated with transitions. A step represents a
partial state of the system, in which an action can be performed. The
step can be active or inactive; an action associated with a step is only per-
formed when the step is active. A transition represents a logic condition
and defines the direct link between steps.
Grafcet/SFC allows programming of sequential logic and parallel control
execution (multiple control flows can be active at once). This makes
Grafcet/SFC very suitable for solving problems related to manufacturing
control applications.
Note:

2

Before the laboratory you must have read the laboratory manual and an-
swered the preparation exercises.

3

Chapter 1

JGrafchart

JGrafchart is a Grafchart integrated development environment developed
at the Department of Automatic Control, Lund University. It is written in
Java using Swing graphics and JGo, a class package for graphical object
editors from Northwoods Corporation.
Note: JGrafchart has a built-in Undo/Redo function. However, in
certain situations it does not work as intended. Therefore it is
currently disabled. Hence, be careful before deleting any items
and make sure that you save your application regularly.
Note: In the laboratory you will use a stripped down version of
JGrafchart that only contains the language elements that you will
actually use.
Note: The JGrafchart version in the lab is not always the latest. If
you download and do the preparations in JGrafchart somewhere
else and then cannot open it in the lab, simply download and use
the latest version in the lab too.

1.1 Workspaces

Grafchart applications are created interactively using drag-and-drop from
a palette (containing the different Grafchart language elements) to workspaces,
see Fig.1.1.
Workspaces support scroll, pan, and zoom. It is possible to change their
size, to iconize them, etc. The application name can be changed from
Properties in the Edit menu.

4

Figure 1.1: JGrafchart main interface

Grafchart objects are connected together graphically by click-dragging the
connection stubs.
A selected object or connection is deleted using the Delete key.

1.2 Grafchart elements

JGrafchart supports the following Grafchart elements: steps, initial steps,
transitions, parallel splits, parallel joins, macro steps, digital inputs, dig-
ital outputs, and internal variables (Boolean and integer).

1.2.1 Steps

Grafchart steps have action blocks that may be shown or hidden through
the step’s context menu (right-click menu), see Fig. 1.2.
Step actions are entered as text strings, either directly by clicking on the
text string in the action block or through Edit in the step’s context menu.
Multiple step actions are separated by semi-colons.

5

Figure 1.2: Step with action block hidden (S1) and visible (S2).

Four different action types are supported. Stored actions (impulse actions
/ enter actions) are executed once, immediately when the step is activated.
The syntax for stored actions is:
S <variable> = <expression>;

Periodic actions (always actions) are executed periodically, once every scan
cycle, while the step is active. The syntax for periodic actions is:
P <variable> = <expression>; Note: The default scan cycle time is 40
ms.
Exit actions (finally actions) are executed once, immediately before the
step is deactivated. The syntax for exit actions is:
X <variable> = <expression>;

Normal actions (level actions) associate the truth value of a Boolean vari-
able with the activation status of the step. The syntax for normal actions
is:
N <BooleanVariable>;

The expression syntax follows the ordinary Java syntax, with some minor
exceptions. One important exception is that the literal 0 (1) is used both
to represent the Boolean value false (true) and the integer value 0 (1).
The context decides the interpretation.
The supported operators are: + (plus), - (minus), * (multiplication), /
(integer division), ! (negation), & (and), p (or), == (equal), != (not equal), <
(less than), > (greater than), <= (less or equal), >= (greater or equal).
Expressions may contain name references to inputs, outputs, and internal
variables. JGrafchart uses lexical scoping based on workspaces. For
example, a variable named Y on workspace W1 is different from a variable
named Y on workspace W2. References between workspaces are expressed
using dot-notation. For example, an action in a step on workspace W1 can
refer to the variable Y on workspace W2 using W2.Y.
By default steps do not have any names. To give a step a name use Set
Name in step’s context menu. During compilation unnamed steps are

6

automatically given temporary names on the form #0, in order to make it
possible to identify a step in case of compilation errors.

1.2.2 Initial steps

Initial steps are steps that are activated when the execution of the appli-
cation starts.

1.2.3 Transitions

Transitions represent conditions or events that should be true in order
for the application to change state. The condition is an expression that
is evaluated as a Boolean value, see Fig. 1.3. A step can be connected to
multiple transitions, thus creating alternative paths. However, in order for
this to work correctly the conditions must be mutually exclusive. Multiple
transitions can also be connected to the same step.

Figure 1.3: Transition

The condition is edited either by clicking on it or with Edit in the transi-
tion’s context menu. The condition expression syntax is the same as for
step actions.
The expression <step>.x is true if the step is active and false otherwise.
The expression <step>.t returns the number of scan cycles since the step
was last activated. The expression <step>.s returns the number of seconds
since the step was last activated.

7

1.2.4 Parallel Splits and Joins

Parallel branches are created and terminated with parallel splits and
parallel joins. The parallel objects only allow two parallel branches. If
more branches are needed, the parallel elements can be connected in
series, see Fig. 1.4.

Figure 1.4: Parallel branching with three branches.

1.2.5 Macro Steps

A macro step represents a hierarchical abstraction. The macro step con-
tains an internal (sub-)workspace which can be shown and hidden in the
macro step’s context menu. The first step in the macro step is represented
by a special enter step. Similarly the final step of the macro step is repre-
sented by a special exit step. The macro step itself may also have actions.
The situation is shown in Fig. 1.5.
The sub-workspace of a macro step has a local namespace lexically con-
tained within the namespace of the macro step itself. For example, the
sub-workspace of the macro step M1 may itself contain a macro step
named M1, without causing any ambiguities.

8

Figure 1.5: Macro step M1 and its workspace which contains the enter
step S1 and the exit step S2.

1.2.6 Digital Inputs and Outputs

Digital inputs are Boolean variables that can be read by the application’s
steps and transitions. Similarly, digital outputs represent Boolean vari-
ables that can be written to by the application’s step actions. Each input
and output has an associated value (0 or 1), a name, and a channel name,
see Fig. 1.6. The name and channel numbers can be changed through
click-and-edit. For digital inputs, the value can be toggled by double-
clicking on the input. Digital inputs have the initial value 0. Two types
of digital inputs and outputs exist, one with ordinary logic (initial value
0) and one with inverted logic (initial value 1).

Figure 1.6: Digital input and output.

9

1.2.7 Internal Variables

Internal variables are variables that can be both read from and written to.
Four types of variables are available: real variables, Boolean variables,
integer variables, and string variables. Associated with each variable are
its value and its name, see Fig. 1.7. Both can be changed by click-and-edit.

Figure 1.7: Boolean variable (left) and integer variable (right).

By default, a variable retains its value when the application is stopped
and later restarted. Optionally, it may have an initial value. Then its
value will be set to the initial value every time the application is started.
If you do not use any initial value you must make sure that the variable
is initialized properly.

1.3 Execution

Grafchart applications are executed by one periodic thread each. The
threads cyclically perform the following:

1. Read digital and analog inputs.

2. Evaluate and fire transitions. Steps are activated and deactivated
(executing S and X actions).

3. Execute P actions.

4. Update variables subject to N actions.

An application can be executed in two different modes. In simulated mode
the inputs and outputs are only connected to the graphics on the screen.
In on-line mode (non-simulated mode), additionally, inputs are read from
the I/O and outputs are written to the I/O. This mode only works when
executing on the machines in the lab rooms of our department. Execution

10

mode and scan cycle time are changed with Properties in the Edit menu.
Note that changing the scan cycle time also affects wait intervals using
<step>.t, since it counts the number of scan cycles.
Before an application can be executed it must be compiled. This is done
through the Execute menu or by pressing the wrench button. During
compilation two things are performed. First, for every transition two lists
are built up. One list containing references to all the steps preceding the
transition, and one list containing references to all the steps succeeding
the transition. Second, the transition expressions and step actions are
compiled. Compilation errors are shown in the message list just below the
toolbar.
The execution is started through the Execute menu or by pressing the
arrow sign button. The execution is stopped through the Execute menu or
by pressing the stop sign button.
Two types of problems may arise during compilation: syntax errors and
semantic errors. For example, the transition condition (y OR z) has a
syntax error (OR is a variable and is not allowed there). The syntactically
correct expression is (y | z) (| is the OR operator). An example of a
semantic error is a name lookup failure, for example if there does not
exist any variables named y or z in the previous example. Transition
conditions and step action blocks which contain errors are highlighted
red.
The syntax for transition conditions and step actions is expressed by
formal grammars. The parser generator tool JavaCC is used to generate
Java parsers for these text expressions. During the parsing, a syntax
tree is built up. During compilation the syntax tree is traversed, and
all nodes representing name references are replaced by Java references
to the corresponding Grafchart object. The expressions are evaluated
on-line, again by traversing the syntax tree. For example, assume that
a transition contains the transition condition y == 5 and that y is the
name of an integer variable. During parsing the syntax tree in Fig. 1.8 is
generated and during compilation the symbol reference is created.

11

y==5

Syntax tree

Equal Node

Name
reference
node

y Constant
node

5

y

Int0

Symbol
reference

Figure 1.8: Syntax tree for the expression y == 5.

12

Chapter 2

Bead sorting

The bead sorting process is a laboratory version of a process that is
similar to processes often found in the manufacturing industry. The
main objective is to select sequences of two different components and
subsequently re-sort them. Beads of two different colors (black and yellow)
are used to represent the components. The beads of each color are provided
from separate compartments. When the process should select a particular
bead color the relevant solenoid is activated. An opto-electronic sensor
is situated in the bead path and signals from this are used to determine
whether or not a bead has actually been released from the compartment.
When the compartments are empty, a LED can be activated.
The sequence pattern of colored beads (e.g. 1 black, 1 yellow, 1 black, 1
yellow, ... or 2 black, 1 yellow, 2 black, 1 yellow, ...) that has been selected
will finally be shown in the track at the bottom of the unit. At this point
the unit is turned over and the beads run back to a color sensor. According
to the color detected, the application should activate the sorting solenoid.
This is repeated until all the beads are back in the correct compartment.
At this point the bead sensing opto-electronic device will indicate that no
further beads are passing and the LED lamp can again be activated. The
process is shown in Figure 2.1. Here, the sequencing mode of the process
is shown. The sorting mode is obtained by rotating it 180 degrees.

2.1 Template Application

A template is available with inputs, outputs, and parameters predefined,
see Figure 2.2. Logic for switching between sorting and sequencing mode
is also included. The scan cycle time is 10 ms.

13

Solenoid 1 Solenoid 2

Solenoid 3

Solenoid 4

Colour
Sensor

Bead
Sensor

SORTER

Black bead compartment Yellow bead compartment

Figure 2.1: Bead sorter unit. The solenoids are in their initial (open)
positions.

The following output variables are available:

Name Channel Type Description
Sol1-Sol4 30-33 digital the solenoids, open (true), close

(false)
LED 37 digital output used to indicate comple-

tion
ResetBead 35 digital output used to reset (set to 0) the

value in the analog bead sensor
ResetColor 36 digital output used to reset (set to 0) the

value in the analog color sensor

14

The following input variables are available:

Name Channel Type Description
Tilt 30 digital input that is true when the pro-

cess is upside down, that is, in
sorting mode (uses an accelerom-
eter)

AnalogBead 32 analog input for the presence of a bead
Col 33 analog input for the bead color

Simple logic contained within the ColorLogic and BeadLogic macro steps
convert the analog inputs to corresponding Boolean variables Color (true
= yellow, false = black) and Bead. When you write your applications you
should use these Boolean variables (virtual sensors) in the same way as
if they had been real sensors.
The bead and color sensors must be reset after each bead. This is done
by sending a short pulse to the reset signal. It is important that the reset
signal is true for at least one cycle, and then false for a sufficiently large
time before the virtual sensor values are read.
There are also some predefined integer that you should use in your appli-
cation to avoid hard coding the timing, see Table 2.1.

Name Description

SortReleaseTime number of scan cycles during which the sorting solenoid
should be open (Sol4)

SeqReleaseTime number of scan cycles during which a sequencing solenoid
should be open (Sol1, Sol2)

SortWaitTime number of scan cycles to wait for the bead to pass solenoid 3
SeqWaitTime number of scan cycles to wait for the bead sensor to detect a bead
NbrBlack number of black beads in the sequence pattern
NbrYellow number of yellow beads in the sequence pattern

Table 2.1: Predefined integer variables.

The sorting and sequencing algorithms should be entered in the corre-
sponding macro steps, see Figure 2.2.

15

Figure 2.2: The template application.

2.2 Basic Functionality

Preparatory exercise 1:

Draw the Grafcet sequence for the sequencing mode of the bead sorting
unit. Let the sequence pattern be 1 black, 1 yellow, 1 black, etc.. To release
a bead from a compartment you activate solenoid 1 or 2 for a short time.
The sequence should describe the following sequencing algorithm:

1. Reset the bead sensor.

2. Release a bead from compartment 1 and wait long enough for the
bead to pass the bead sensor.

3. If a bead is detected, go to step 4, otherwise repeat steps 1 and 2. If
no bead has been detected after 5 attempts, go to step 7.

4. Reset the bead sensor.

16

5. Release a bead from compartment 2 and wait long enough for the
bead to pass the bead sensor.

6. If a bead is detected, go to step 1, otherwise repeat steps 4 and 5. If
no bead has been detected after 5 attempts, go to step 7.

7. At least one of the compartments is now empty, and the sequencing
algorithm may be finished.

Preparatory exercise 2:

Draw the Grafcet sequence for the sorting mode of the bead sorting unit.
Use the following sorting algorithm:

1. Reset the sensors.

2. Determine the color of the bead above solenoid 4, and let this decide
the position of solenoid 3.

3. Release the bead by opening solenoid 4 for a short time.

4. Wait long enough for the bead to pass solenoid 3.

5. As long as there are still beads above solenoid 4, repeat steps 1-4. If
no bead has been released during the 3 last cycles, go to step 6.

6. The sorting algorithm is finished.

Exercise 1:

Make sure that JGrafchart is started after you have turned on the bead
sorter process. Enter the two main sequences inside the macro steps
Sorting and Sequencing respectively, and ensure that they work properly.
Note: You might need to tweak the release and wait times. Due to
problems with the process, the solenoids may end up in the wrong place
if you try to move them too fast.

Exercise 2:

Modify step 7 in the sequencing algorithm above so that all remaining
beads are released from compartment 1 or 2 after the sequencing has
completed.

17

2.3 Lamp alarm

The sorter unit is equipped with a LED lamp that can be used to signal
that a mode has run to completion.

Exercise 3:

Add the lamp alarm function to your sequences.

2.4 Custom Patterns

Exercise 4:

Modify the sequence in order to allow other parametrized sequences (e.g.
n black beads, m yellow beads etc).

18

