
Overview of Java

Real-Time Systems, Lecture X

Martina Maggio

18 January 2017

Lund University, Department of Automatic Control

www.control.lth.se/course/FRTN01

www.control.lth.se/course/FRTN01

Content

[Real-Time Control System: Chapter 6.4]

1. Introduction

2. The Java Language

2.1 Java Statements

2.2 Object-Oriented Programming

1

Introduction

Aim of the Lecture

• Present the basic ideas and concepts behind Java.

• Show how a simple Graphical User Interface (GUI) can be

implemented.

2

Further Sources

• Essentials of the Java programming language Part I1 and II2.

• Per Holm, Objektorienterad programmering och Java,

Studentlitteratur, 1998.

• Arnold and Gosling, The Java Programming language,

4th edition3, 2005.

• Java links and material on the course home page.

1http://www.oracle.com/technetwork/java/index-138747.html
2http://www.oracle.com/technetwork/java/basicjava2-138746.html
3Online from http://www-public.tem-tsp.eu/˜gibson/Teaching/CSC7322/

3

Overview

• Developed at Sun Microsystems (by Gosling et al.);

• Sun acquired Oracle in 2009;

• Syntax from C and C++, semantics from Simula

• General object-oriented language;

• First release in May 1995, Latest release Java 8 in 2014;

• Java 9 scheduled for March 2017;

• Originally intended for consumer electronics;

• Later remarkted as a WWW-language;

• Programs are compiled into bytecode and interpreted by the Java

Virtual Machine (JVM), platform independent.

4

Applications, Applets and Servlets

• Java applications are stand-alone programs;

• Java applets run within Java-enabled browsers;

• Java servlets run within network servers.

5

The Java Language

• Simple: easy to learn, based on today’s practice (borrow C++

syntax), small size, automatic garbage collection;

• Network-oriented: full support for networked applications, TCP/IP

protocols (FTP, HTTP), open, access objects across the net;

• Portable: architecture-netural, byte code interpreter;

• (more) Strongly typed (than C): compile-time checks, safe

references instead of unsafe pointers;

• Secure: the bytecode verifier verifies the code before it is

interpreted, the security manager in the JVM check access to

resources like file system and network.

6

The Java Language

Hello World

1 class HelloWorld {

2 public static void main(String[] arguments) {

3 System.out.println("Hello World, I print!");

4 }

5 }

The main method must be

declared in the class that is

started from the command

line (with ‘java classname’).

.

Compile and execute:

$ javac HelloWorld.java

(creates HelloWorld.class)

$ java HelloWorld

HelloWorld, I print!

A source file may contain only one public class. The file should have the

same name as the public class with the java extension. The output of the

compilation is the file named as the class with the extension .class.

7

Comments

1 // Line comments extend to the end of the line

2

3 /* A multi-line comments,

4 that continues on multiple lines */

5

6 /** Documentation comment,

7 to be used only immediately before a class or method declaration

8 used by the javadoc tool **/

8

Simple Declarations

1 int m, n; // integer variables

2 double x, y; // real variables

3 double z = 0.89; // initialization

4 boolean b; // true or false

5 char ch; // single character

9

Expressions

1 int m, n; // integer variables

2 double x, y; // real variables

3 double z = 0.89; // initialization

4 boolean b; // true or false

5 char ch; // single character

6

7 n = 3 * (5 + 1);

8 x = y / 1.4;

9 n = m % 8; // modulo 8

10 b = true; // = for assignment

11 b = (n == m); // == for comparison

12 ch = 'x';

10

Explicit Type Casting

1 double radians;

2 int degrees;

3

4 degrees = radians * 180 / 3.14; // error:

5 // incompatible types: possible lossy conversion from double to int

6 degrees = (int) (radians * 180 / 3.14); // ok

11

Java Statements

Similar to other languages, statements can be grouped with curly braces:

{ and }. In Modula-2: BEGIN and END.

Conditional Statements:

boolean condition within parenthesis, no then keyword

1 if (n == 3)

2 x = 3.0;

3 else {

4 x = 4.0;

5 System.out.println("Else");

6 }

1 if (n != 3) {

2 x = 3.0;

3 y = 7.0;

4 }

5 else {

6 x = 4.0;

7 y = 2.0;

8 }

can use logical operators: and (&&), or (||), not (!)

12

Java Statements

While, For and DoWhile Statements:

1 double sum = 0.0;

2 double term = 1.0;

3 int k = 1;

4 while (term >= 0.00001) {

5 sum = sum + term;

6 term = term / k;

7 k++;

8 }

1 double sum = 0.0;

2 int i;

3 for (i = 1; i <= 100; i++) {

4 sum = sum + 1.0 / i;

5 }

1 double x = 0.0;

2 double y = 20.0;

3 do {

4 x = x + 1.0;

5 y = y / x;

6 } while (y > 3.0);

13

Java Statements

Case statement:

1 switch (x) {

2 case 1: y = 0;

3 z = 1;

4 break;

5 case 2: y = 1;

6 z = 0;

7 break;

8 case 3: y = 1;

9 z = 1;

10 break;

11 default: y = 0;

12 z = 0;

13 break;

14 }

14

Object-Oriented Programming

• Class: a structure that defines the data (state) and the operations

(methods) that can be performed on that data (the behavior).

Abstract data type. A class without methods corresponds to an

ordinary record (Pascal) or struct (C).

• Object: an instance (or object) is an executable copy of a class.

Classes and objects provide modularity and information hiding.

15

Object-Oriented Programming

• Inheritance: a class inherits state and behavior from its superclass

(single inheritance) or superclasses (multiple inheritance).

Subclasses can add state and behavior. Subclasses can override

(redefine) inherited state and behavior. In case of single inheritance

the classes form an inheritance tree (class hierarchy).

Inheritance supports re-usability and provides a mechanism for

organizing and structuring software.

16

Object-Oriented Programming

• Polymorphism: a subtype is a datatype that is related to another

datatype (the supertype) by some notion of substitutability, meaning

that program elements, typically subroutines or functions, written to

operate on elements of the supertype can also operate on elements

of the subtype. If Rectangle is a subtype of Figure, any term of

type Rectangle can be safely used in a context where a term of

type Figure is expected.

There is much more to polymorphism (for example parametric

polymorphism) but in object-oriented programming polymorphism is

usually subtype polymorphism.

17

Class: Attributes

A class declaration contains a set of attributes (fields or instance

variables) and functions (methods). Attributes:

1 class Turtle {

2 // attributes declaration

3 private boolean penDown;

4 protected int x, y;

5 }

• private cannot be accessed from outside the class

• protected can be accessed from within the class and all its

subclasses but not from the outside

• public can be accessed from the outside

18

Class: Methods

A class declaration contains a set of attributes (fields or instance

variables) and functions (methods). Methods:

1 class Turtle {

2 // attributes

3 protected int x, y;

4

5 // methods

6 public void jumpTo (int newX, int newY) {

7 x = newX; y = newY;

8 }

9 public int getX () { return x; }

10 }

• public means they can be accessed from outside

19

Class: Constructors

A constructor is a special method that has no return type and is called

when an object is created. It is possible to have multiple methods with

the same name and different parameter sets (often used for constructors)

— as long as the signatures are different.

1 class Turtle {

2 // attributes

3 protected int x, y;

4

5 // constructors

6 public Turtle () { x = 0; y = 0; } // no params

7 public Turtle (boolean initial) { // one boolean

8 if (initial) { x = 5; y = 5; }

9 else { x = -5; y = -5; }

10 }

11 public Turtle (int startX, int startY) { // two int

12 x = startX; y = startY;

13 }

14 }

20

Class: Example

1 class Turtle {

2 protected int x, y; // attributes

3

4 // constructor

5 public Turtle (int startX, int startY) {

6 this.jumpTo (startX, startY);

7 }

8 // methods

9 public void jumpTo (int newX, int newY) { x = newX; y = newY; }

10 public int getX () { return x; }

11 }

12

13 class Main {

14 public static void main(String[] args) {

15 Turtle t = new Turtle(10, 10);

16 a.jumpTo(t.getX(), 5);

17 }

18 }

• the object that the method belongs to can be accessed using this

21

Class: Static Attributes

By preceding the declaration of an attribute with static the attribute

becomes a class variable, all the instances share the same copy of the

class variable.

1 class Turtle {

2 // attributes

3 protected int x, y;

4 static public int numTurtles = 0;

5 // methods

6 public Turtle (int startX, int startY) {

7 x = startX; y = startY;

8 numTurtles++;

9 }

10 }

11 class Main {

12 public static void main(String[] args) {

13 Turtle t1 = new Turtle(9, 5); Turtle t2 = new Turtle(10, 10);

14 System.out.println("num = " + t1.numTurtles); // num = 2

15 System.out.println("num = " + t2.numTurtles); // num = 2

16 }

17 } 22

Class: Static Methods

The keyword static can be used also for methods. Static methods

(class methods) can only access static variables (class variables). Class

methods are accessible from the class itself (in addition to from each

instance of the class). An example is the Math class.

1 double x = 9.0;

2 double y = Math.sqrt(x); // 3.0

23

Nested Classes

A class that is defined as a member of another class is called a nested

class. It has unlimited access to its enclosing class members, even if they

are declared private. A nonstatic nested class is known as an inner class

(the most usual form of nested classes). Inner classes can be anonymous

(have no name). An inner class can only be accessed via an instance of

the outer class.

1 class OuterClass {

2 // attributes

3 private String name;

4 // methods

5

6 class InnerClass {

7 // attributes

8 // methods

9 public void printName() {

10 System.out.println("Attribute name of the outer class: " + name);

11 }

12 }

13 } 24

Subclasses

A subclass extends a superclass:

1 class NinjaTurtle extends Turtle {

2 // attributes

3 String name;

4

5 // constructors

6 public NinjaTurtle (int initX, int initY, String initName) {

7 super(initX, initY); // call constructor of super class

8 name = initName;

9 }

10 }

25

Subclasses

A subclass can override methods of a superclass (not possible for static

or final ones):

1 class Turtle {

2 ...

3 public Turtle(int initX, int initY);

4 public void jumpTo (int newX, int newY) { x = newX; y = newY; }

5 }

6

7 class NinjaTurtle extends Turtle {

8 String name; // attributes (+ attributes in superclass)

9

10 // constructor (+ constructors in superclass)

11 public NinjaTurtle (int initX, int initY, String initName) {

12 super(initX, initY); name = initName;

13 }

14 public void jumpTo (int newX, int newY) { // method overriding

15 super.jumpTo(newX, newY); // it is possible to call the superclass

16 System.out.println(name + " jumped to a new position");

17 }

18 }
26

Abstract Classes

Methods can be abstract. They then contain only declarations without

any implementation. The method must be implemented in the the

subclasses. A class with an abstract method is an abstract class and

must be decleared abstract. An abstract class cannot be instantiated,

but it is possible to instantiate a subclass that implements the abstract

methods. Sometimes it is useful to declare a class abstract even if there

is no abstract methods, to structure the hierarchy.

1 abstract class Drawable {

2 public abstract void draw();

3 }

27

Interfaces

A way of obtaining some of the functionality of multiple inheritance

without is problems. An interface defines a set of methods. Any class

may implement that interface (and a class can implement several

interfaces). Reference variables may be typed either by class or by

interface.

• An interface may contain only methods and constant declarations.

• All methods are implicitly public and abstract.

• A class can implement several interfaces, but can extend only

another class.

• An interface can be used as a type name.

• Interfaces can be extended like classes. An interface can extend

more than one interface.

28

Example

1 interface Drawable {

2 void draw (SimpleWindow w);

3 int getWidth();

4 int getHeight();

5 }

6

7 class Rectangle implements Drawable {

8 private int xSide, ySide;

9

10 public void draw(SimpleWindow w) {

11 int x = w.getX(); int y = w.getY();

12 w.lineTo(x, y + ySide); // draw the first line

13 w.lineTo(x + xSide, y + ySide); // draw the second line

14 w.lineTo(x + xSide, y); // draw the third line

15 w.lineTo(x, y); // close the rectangle

16 }

17 public int getWidth() { return xSide; }

18 public int getHeight() { return ySide; }

19 }

29

Example

1 interface Drawable {

2 void draw (SimpleWindow w);

3 int getWidth();

4 int getHeight();

5 }

6

7 class Person implements Drawable {

8 private String name;

9

10 public void draw(SimpleWindow w) {

11 w.writeText(name);

12 }

13 public int getWidth() {

14 return 6 * name.lenght();

15 }

16 public int getHeight() {

17 return 10;

18 }

19 }

30

Example

1 interface Drawable {

2 void draw (SimpleWindow w);

3 int getWidth();

4 int getHeight();

5 }

6

7 // it is possible to write methods that work with every instance of

8 // a Drawable, like this drawWithBorder

9 void drawWithBorder (Drawable d, int x, int y SimpleWindow w) {

10 w.moveTo(x, y);

11 d.draw(w);

12 int width = d.getWidth();

13 int height = d.getHeight();

14 w.moveTo(x-2, y-2);

15 // do 4 calls to w.lineTo() to draw the border

16 }

31

Arrays

Arrays are similar to objects, accessed using reference variables.

1 int[] someInts; // integer array

2 Turtle[] turtleFamily; // array of references to turtles

3

4 someInts = new int[30]; // specify size when the array is created

5

6 int i;

7 for (i = 0, i < someInts.lenght; i++) { // lenght is predefined

8 someInts[i] = i * i; // indices start at 0

9 }

32

Call-by-value vs. Call-by-reference

• Call-by-value: when a parameter is passed to a method, Java

passes it by value. For simple types, this means that the value of the

int or double is passed and the method cannot modifies the value

seen by the callee.

• In case an object is passed, things are more tricky. You can see it as

if the object passed was a pointer, pointing to the address in which

the object is stored. The pointer cannot be changed by the method,

but the content of what is pointed by it can be changed. The pointer

is passed with a call-by-value but its reference can be modified. So

in some sense it can be seen as the call-by-reference of C.

33

Example

1 class Dog {

2 String name;

3 public Dog(String name) { this.name = name; }

4 public String getName() { return name; }

5 public void setName(String name) { this.name = name; }

6 }

7 class Main {

8 public static void main(String[] args){

9 Dog aDog = new Dog("Max");

10 foo(aDog);

11 Boolean a = aDog.getName().equals("Fifi"); // ?

12 Boolean b = aDog.getName().equals("Max"); // ?

13 }

14 public static void foo(Dog parameter) {

15 Boolean c = parameter.getName().equals("Fifi"); // ?

16 Boolean d = parameter.getName().equals("Max"); // ?

17 parameter.setName("Fifi");

18 Boolean e = parameter.getName().equals("Fifi"); // ?

19 Boolean f = parameter.getName().equals("Max"); // ?

20 }

21 } 34

Example

1 class Dog {

2 String name;

3 public Dog(String name) { this.name = name; }

4 public String getName() { return name; }

5 public void setName(String name) { this.name = name; }

6 }

7 class Main {

8 public static void main(String[] args){

9 Dog aDog = new Dog("Max");

10 foo(aDog);

11 Boolean a = aDog.getName().equals("Fifi"); // true

12 Boolean b = aDog.getName().equals("Max"); // false

13 }

14 public static void foo(Dog parameter) {

15 Boolean c = parameter.getName().equals("Fifi"); // false

16 Boolean d = parameter.getName().equals("Max"); // true

17 parameter.setName("Fifi");

18 Boolean e = parameter.getName().equals("Fifi"); // true

19 Boolean f = parameter.getName().equals("Max"); // false

20 }

21 } 35

Example

1 class Dog {

2 String name;

3 public Dog(String name) { this.name = name; }

4 public String getName() { return name; }

5 public void setName(String name) { this.name = name; }

6 }

7 class Main {

8 public static void main(String[] args){

9 Dog aDog = new Dog("Max");

10 foo(aDog);

11 Boolean a = aDog.getName().equals("Fifi"); // ?

12 Boolean b = aDog.getName().equals("Max"); // ?

13 }

14 public static void foo(Dog parameter) {

15 Boolean c = parameter.getName().equals("Fifi"); // ?

16 Boolean d = parameter.getName().equals("Max"); // ?

17 parameter = new Dog("Fifi");

18 Boolean e = parameter.getName().equals("Fifi"); // ?

19 Boolean f = parameter.getName().equals("Max"); // ?

20 }

21 } 36

Example

1 class Dog {

2 String name;

3 public Dog(String name) { this.name = name; }

4 public String getName() { return name; }

5 public void setName(String name) { this.name = name; }

6 }

7 class Main {

8 public static void main(String[] args){

9 Dog aDog = new Dog("Max");

10 foo(aDog);

11 Boolean a = aDog.getName().equals("Fifi"); // false

12 Boolean b = aDog.getName().equals("Max"); // true

13 }

14 public static void foo(Dog parameter) {

15 Boolean c = parameter.getName().equals("Fifi"); // false

16 Boolean d = parameter.getName().equals("Max"); // true

17 parameter = new Dog("Fifi");

18 Boolean e = parameter.getName().equals("Fifi"); // true

19 Boolean f = parameter.getName().equals("Max"); // false

20 }

21 } 37

References

• References are the same as pointers in C.

• Manipulation of references is not allowed (for example adding

integers).

• Compile-time checks guarantee that a reference is initialized before

it is used.

38

Memory Allocation

For static memory allocation, all the memory is allocated at start-up.

For dynamic memory allocation there are two alternatives:

• memory is allocated dynamically from the heap when needed

(Pascal, Modula-2, C, C++, . . .):

– manual memory management,

– the application explicity allocates memory when needed and

deallocates it when no longer use it,

– problem: dangling pointers, memory leaks, fragmentation;

• automatic memory management (Java):

– runtime system or OS deallocates memory automatically,

– garbage collection,

– problem: takes time and may disturb the real-time application.

39

Java Garbage Collector

The Garbage Collector in Java:

• runs as a low-priority thread,

• it is incremental: work is divided into small pieces that are spread

out during the execution,

• can be explicitly invoked using System.gc(),

• real-time garbage collectors have been developed (for example by

Roger Henriksson) and are part of Sun’s Real-Time Java 2.

40

Exceptions

Exceptions happen when error occurs. The exceptions contain

information about the execution (type, state of the program). During the

execution, the JVM tries to find code that handles the exception (it

throws the exception to a method that can handle it – the runtime

systems searchers backwords through the call stack of the method until it

finds a method containint appropriate code to handle the exception – the

handler has a catch for the exception – if no appropriate handler is

found, the application terminates with an error).

41

Exceptions

Exception handling code is composed by at least a try and a catch or a

try and a finally (or all three).

1 class Main {

2 public static void main(String[] arguments) {

3 try {

4 // code that can throw the exception

5 System.out.println("try");

6 } catch (Exception e) {

7 // code to handle the exception of type Exception

8 System.out.println("catch");

9 } finally {

10 // code that is executed anyway (used for cleanup)

11 System.out.println("finally");

12 }

13 }

14 }

42

Exceptions

The keyword throw can be used to raise an exception. A method can

signal that it may throw an exception in its signature, by using throws

and a list of comma-separeted types of exception.

1 class Main {

2 public static void main(String[] arguments) {

3 try {

4 System.out.println("try");

5 uselessMethod(15); // prints "I am happy"

6 uselessMethod(5); // throws the exception

7 } catch (Exception e) {

8 e.printStackTrace(); // prints the call stack

9 System.out.println("catch");

10 }

11 }

12 public static void uselessMethod(int parameter) throws Exception {

13 if (parameter < 10) throw new Exception("I wanted something else");

14 else System.out.println("I am happy");

15 }

16 }

43

Exceptions

Types of exceptions:

• RuntimeException

exception that occurrs within the Runtime system like division by

zero, the compiler does not require that these are caught or

specified.

• Checked Exceptions

checked by the compiler, requires that the exception is caught or

specified. For example wait() and sleep can throw an

InterruptedException.

It is possible to define new types of exceptions (not needed for this

course).

44

Packages

Java code is often organized in packages. A package is a collection of

related classes. Attributes with unspecified visibility get package

visibility (they are public to other classes in the package and private to

classes that do not belong to the package). A class that should be

accessible from outside the package must be declared public. Classed

declared in files without a package specification belong to a ‘default’

package. All files belonging to the package should be stored in the same

directory (named with the name of the package).

File Rectangle.java:

1 package Drawings;

2

3 public class Rectangle {

4 private double lenght, height;

5 public Rectangle(double l, double h) { lenght = l; height = h; }

6 public double getArea() { return height * lenght; }

7 }

45

Package Names

• java.xxx: standard java packages

(java.awt, java.awt.event)

• javax.xxx: java extension packages

(javax.swing)

• User-defined packages: globally unique names

convention: reversed Internet domain name followed by local

directory structure (se.lth.cs.realtime,

se.lth.control.realtime)

46

Standard Packages

• java.lang: Object, Class, String, . . .

• java.io: Streams, Random-Access Files

• java.applet: Applet

• java.awt: Abstract Window Toolkit

• java.util: Collections, Date, Time, . . .

• java.net: Sockets, Telnet, URLs, . . .

47

Package Access

• Explicit Naming

1 Gui.CommandButton button = new Gui.CommandButton();

• Import One Class

1 import Gui.CommandButton;

2 CommandButton button = new CommandButton();

• Import a Full Package

1 import Gui.*;

2 CommandButton button = new CommandButton();

48

Graphical Interfaces: Swing

Swing is a class package for graphical user interfaces implementation. It

supports buttons, menus, scrollbars and more. All the class names begin

with J (JButton, JFrame, . . .).

1 import javax.swing.*;

2 import java.awt.*;

3 import java.awt.event.*;

49

Containers

Every program that presents a swing GUI contains at least one top-level

swing container:

• JFrame: implements a single main window

• JDialog: implements a secondary, “pop-up” window

Intermediate containers simplify the positioning of components in the

window:

• JPanel

• JScrollPane

• JTabbedPane

50

Atomic Components

Self-sufficient entities that present information to the user or implement

some user control4

• JButton – a button

• JTextField – editable text field

• JLabel – uneditable text field

• JSlider – a slider

• PlotComponent – local plot class

4https://docs.oracle.com/javase/tutorial/uiswing/components/index.html

51

Layout Management

Controls the layout of components in an intermediate container.

• BorderLayout: composed by five areas (north, south east, west and

center), default layout for every content pane;

• BoxLayout: puts components in a single row or column;

• FlowLayout: lays out components from left to right, starting new

rows if necessary. default layout for JPanel;

• GridLayout: places components in a cell grid (matrix), all of the

same size.

52

Event Handling

Each user action (key press, mouse movements, mouse clicks) is

considered an event. The Swing system informs the Java application

about an event by creating an object of class AWTEvent. The class has

several subclasses, among which:

• ActionEvent: generated when a specific event for a certain

component occurs (like mouse clicks);

• TextEvent: generated when the content of a text component is

changed.

53

Listeners

When an event occurs, the runtime system calles a method in a listener

object. A listener is an object that implements a listener interface. For

example:

• ActionListener: contains actionPerformed(ActionEvent e)

and is called when an ActionEvent object is generated;

• TextListener: contains textValueChanged(TextEvent e) and

is called when a TextEvent object is generated.

Several components can listen to the same event. This is achieved by

calling the method addActionLinstener witht the listener object as

argument.

54

Event Methods

All event classes contain the method Object getSource() that returns

the source object of the event. Some event classes contain event-specific

methods like:

char getKeyChar(); // Key event

int getX(); int getY(); // Mouse event

55

Setting up Event Handlers

The event handler class implements a listener interface:

1 public class MyEventHandler implements ActionListener {

One should register an instance to the event handler class as a listener

upon one or more components:

1 MyEventHandler handler = new MyEventHandler();

2 component.addActionListener(handler);

In the listener interface, one should implement the actionPerformed

method:

1 public void actionPerformed(ActionEvent e) {

2 // code to react to the action

3 }

56

Event Dispatching Thread

Event-handling code executes in a single thread to make sure that events

are processed sequentially and the method handling the reaction to an

event terminates before handling the next action. This single thread is

called event-dispatching thread.

Rule: All the code that might affect or depend on the state of a

component should be executed by the event-dispatching thread.

57

Execute code in the event-dispatching thread

Applications usually need to perform (non user-related) operations on the

graphical user interface after it is created (for example because of

initialization or because of application-related events that do not depend

on the user). Swing has two methods that can be used in this case:

• invokeLater: registers code to be executed by the

event-dispatching thread and terminates,

• invokeAndWait: wait until the code executes.

58

Swing Example

A periodic thread that generates a sine wave. The data is sent to a GUI

that plots the sine wave using a PlotComponent. The GUI also has two

sliders that allow to change frequency and amplitude of the sine wave.

• Classes: Main, Sinus (the sine wave generator, Monitor (internal

class of Sinus, Opcom (the GUI).

• User Threads: main, Sinus (extends the thread class), Swing

event-dispatching thread.

59

Swing Example: Panels

ampSlider freqSlider

ampLabel freqLabel

ampPanel freqPanel

sliderPanel plotter

guiPanel

60

	Introduction
	The Java Language
	Java Statements
	Object-Oriented Programming

