Course Summary Real-Time Systems

2017

Remaining Lectures

- Tuesday May 16, 15:15-17:00
 - Demo lecture
 - $-\operatorname{We}$ meet in M:E first, then to go the lab
- Tuesday May 16, 17:00-19:00
 - Oral presentations
 - 10 minutes / group
 - Projectors will be available
 - Parallel sessions with multiple groups per session – a schedule will be distributed later

Exams

- Friday April 21, 14–19, Sparta C,D
- Saturday June 3, 8–13, Sparta D
- Monday August 14, 8–13, MA 9A

Real-Time Systems

The most important parts! or with some luck What you need to know to pass the exam

Lecture 1: Introduction

- Basic definitions (hard, soft, ...)
- Timing parameters in continuous controllers (sampling latency, sampling interval, input-output latency)
- Different event types (periodic, aperiodic, sporadic)

Lecture 2: Concurrent programming

- · Process vs threads
- Process' internal states and state transitions
- The ReadyQueue
- Context switches
 - Save, restore
- The role of the stackpointerProcess representation
- The Schedule procedure in Stork
- Java threads:
 - Extend Thread versus implement Runnable
 - Thread priorities

Lecture 3: Process communication 1

- Non-reentrant code
- Race conditions
- Mutual exclusion
- Semaphores:
 - Use for mutual exclusion and synchronization
 - Logical semantics
 - Different types of semaphores (counting, binary)
 - Basic version vs alternative version
 - Stork implementation
 - Condition synchronization using semaphores
 - Java Class Semaphore

- · Monitors:
 - Basic definitions
 - Condition variables
 - Monitors in Stork Implementation
- · Synchronization in Java
 - Synchronized methods
 - Synchronized blocks
 - Instance locks vs class locks
 - Condition synchronization in Java - Class ConditionVariable
- Producer-Consumer example - Using semaphores

 - Using synchronization
- · Passing objects between threads

Lecture 4: Process communication 2

- Deadlock
 - Necessary conditions
 - Deadlock handling (prevention, avoidance, detection & recovery) Hierarchical resource allocation
- Priority inversion
- When does it occur?
- Basic priority inheritance
- Priority Ceiling
- Immediate inheritance
- Message passing
 - Alternative schemes (asynchronous/synchronous, direct/indirect)

Lecture 5: Interrupts and time

- · Interrupts and interrupt handling
- Clock interrupts - The actions performed in the clock interrupt handler TimeQueue
- · Tick-based vs event-based clock interrupts
- Foreground-background schedulers
- Time primitives (relative vs absolute)
- Implementation of periodic controller tasks: Different alternatives and their problems
- Minimizing the input-output latency CalculateOutput and UpdateState Cascaded controllers
- Jitter

Lecture 6: Sampling of linear systems

- · Sample and Hold
- · Effects of sampling
- · Aliasing
- ZOH sampling
- · ZOH sampling of systems with input delays
- Calculating Φ and Γ
- · Solution of system equations
- · Stability regions
- Convolution
- · From difference equations to state-space

Lecture 7: Input-output models

- · Shift operators and z-transform
- · Pulse transfer operator and Pulse transfer function
- · Poles and zeros
- · Input-output models
- Frequency response
- · Transformation of poles
- Calculation of H(z)

Lecture 8: Approximations of analog controllers, PID control

- · Different approximation methods
- Prewarping
- PID control
 - Textbook algorithm (P, I, and D part)
 - Absolute versus incremental form
 Algorithm modifications
 - Algorithm modifications
 Setpoint weighting
 - Limitation of derivative gain
 - Derivative weighting
 - Windup and anti-windup
 - Tracking
 - Bumpless mode and parameter changesDiscretization
 - Discretiza
 Code

Lecture 9: State feedback and observers

- State feedback
- Deadbeat
- Observers
 - Prediction form
 - Filter form (with direct term)
- · Disturbance estimation & integral action

Lecture 10: Feedforward design

- · Feedforward to reduce disturbances
- Feedforward to handle reference changes
 - Transfer function approach
 - State-space approach
 - Nonlinear reference generation

Lecture 11: Implementation aspects

- · Sampling & Aliasing
- Choice of sampling interval
- · Computational delay
- A-D and D-A quantization
- · Pulse width modulation
- Fixed-point arithmetic
 - Q format
 - Two's complement representation
 Fixed point operations (+, -, *, /) including C code
 - Fixed point operations (+, -, ^, /) including C c
 Overflow
 - Sensitivity towards coefficient roundoff

Lecture 12: Scheduling theory

- Execution time analysis
 - Measurements vs analysis
- Basic problems
- CPU utilization
- Critical instant
- Static cyclic scheduling

 Basic ideas
- · Earliest Deadline First Scheduling
 - Draw diagrams
 - Sufficient schedulability condition
 - Overrun behaviour

- Fixed Priority Scheduling:
 - Priority assignment (rate monotonic, deadline monotonic)
 - Rate monotonic analysis
 - Approximate analysis (two formulas !!)
 - 69% rule of thumb
 - Exact analysis

 Response-time calculations
 - Draw schedules
 - Overrun behaviour
- NOT:
 - Scheduling of aperiodic tasks
 - Alternative scheduling models

Lecture 14: Discrete-event control

- State machines
- Statecharts
- Grafcet
 - Firing rules
 - Action types
 - Be able to use Grafcet in problems and examples
- Petri Nets
 - Firing rules
 - Generalized PNs
 - Dijkstra's problems
- · Coding state machines in Java

Lecture 15: Real-time networks and networked control systems

- The OSI protocol (stack) model
- Shortcomings of the OSI/IP stack for realtime communication
- CAN protocol
 Basic notions and arbitration mechanism
- TTP
 - Basic notions

Lecture 13: Project specifications

Lecture 16: Hot research topics

• NOT on the exam

Knowledge from the projects

- The use of Java in real-time programming
- The program structure from Lab 1
- Common problems and solutions
- Priorities, synchronization,

Typical Exam Problems

- PID implementation
- · Discretization of continuous designs
- Synchronization (semaphores, monitors, deadlock)
- Scheduling theory
- · Grafcet / Petri nets
- ZOH sampling
- Input-output models
- · State feedback / observers / reference signals
- · Fixed point arithmetic

Open Book Exam

- You may use the two text books during the exam + the Real-Time Systems Formula Sheet + the Formula Sheet from Reglerteknik AK
- · You may NOT use the exercise book
- · You may NOT use the slide copies
- · No extra notes in the text books
- Problems were the solution can be directly taken from the text books will not be given

Advanced Courses 2017/2018

- LP1 fall 2017
 - Multivariable Control
 - System Identification
- LP2 fall 2017
 - Nonlinear Control and Servo Systems
 Project in Automatic Control
- LP3 spring 2018
 - Real-Time Systems
 - Predictive Control
 - Mathematical Modelling, Advanced Course
- LP4 spring 2018
 - Network Dynamics
 Market-Driven Systems