
Scheduling Theory

Real-Time Systems, Lecture 12

Martina Maggio

16 February 2017

Lund University, Department of Automatic Control

www.control.lth.se/course/FRTN01

www.control.lth.se/course/FRTN01


Content

[Real-Time Control System: Chapter 8]

1. Introduction

2. Execution Time Estimation

3. Scheduling Approaches

3.1 Static Cyclic Scheduling

3.2 Fixed Priority Scheduling

3.3 Earliest Deadline Scheduling

3.4 Reservation Based Scheduling

1



Introduction



Scheduling Theory

Goal: guarantee that a set of tasks sharing resources (CPU) meet their

deadlines.

Notation: events occurr (they require computations, like interrupts) and

can be distinguished in aperiodic (sporadic) and periodic; a task executes

a piece of code in response to an event, the worst-case execution time

(WCET) is an upper bound to the amount of CPU time the task

execution requires (when the task is alone in the system); a deadline is

the maximum allowed time for the task completion.

Scheduling is the act of choosing which event to process at a given time

(which task to execute at a given time).

2



Schedulability Analysis

For hard real-time systems the deadlines must always be met. An offline

test (performed before the system is started) is required, to check that

there are no circumstances when deadlines are missed. A system is

unschedulable if the scheduler does not find a way to switch between

the tasks and meet all the deadlines.

A test can be:

• sufficient if when the answer is yes all the deadlines are met;

• necessary if when the answer is no there really is a situation in

which deadlines are missed;

• exact if it is both sufficient and necessary.

We require a sufficient test and we would like it to be as close as

possible to necessary.

3



Execution Time Estimation



Execution Time Estimation

Basic question: how much CPU does this piece of code need?

Two major approaches:

• measuring execution time;

• analyzing execution time.

4



Measuring Execution Time

The code is compiled and run with measuring devices (for example a

logical analyzer) connected or the operating system provides execution

time measurements.

If the piece of code has input data, a large set of test input data must be

used and the longest time required is the longest time masured plus some

safety margin.

5



Measuring Execution Time

Problems:

• execution times are data dependent (for example sensor reading);

• caching (memories have different speed, a memory reference causing

a cache miss takes much longer time that one that finds the data in

the cache);

• pipelining and speculative execution;

• garbage collectors, etc.

The general problem of this approach is that we are not guaranteed

that we have experienced the longest execution time.

6



Measuring Execution Time

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

Worst-caseBest-case

Longest

observed case

Used case

Latency [s]

P
ro
b
ab
ili
ty

7



Analyzing Execution Time

Aim: a tool that takes the source code and automatically decides the

longest execution time with formal correctness (researched in the last 20

years).

Problems: compiler dependent (different compilers generate different

code, the remedy is working with the machine code).

Approach: use the instruction tables from the CPU manufacturer and

add up the instruction times of the individual statements.

8



Analyzing Execution Time

Problem: branching statements (if, case)

we don’t know which code is executed before runtime.

if (x>5)

x=x+1;

else

x=x*3;

MOV(_X) D0

CMP D0 5

BGT L1

MUL D0 3

MOVE D0

JMP L2

L1: ADD D0 1

L2: ...

B1

B2

B3

if B1

B3

else

B2

Longest execution time:

time(B1) + max(time(B2), time(B3))

9



Analyzing Execution Time

Problem: branching statements (if, case)

we don’t know which code is executed before runtime.

cycles

MOV: 8

CMP: 4

BGT: 4

MUL: 48

JMP: 4

ADD: 4

cycles(B1) = 8+4+4 = 16

cycles(B2) = 48+8+4 = 60

cycles(B3) = 4

cycles(if) = 16 + max(60,4) = 76

8MHz clock frequency, 1 cycle takes 125 ns

time(if) = 76 * 125 ns = 9.5 µs

10



Analyzing Execution Time

Extended to more complex statements like nested if statements.

if (x>0)

if (x>5) x = x+1;

else x = x*3;

else

x = x+10;

11



Analyzing Execution Time

Problems:

• Loops (for, while): number of iterations unknown.

Remedy: the programmer must annotate the source code with the

maximum number of iterations the loop executes.

• Recursion: how deep can the recursive call get.

Remedy: recursion not allowed.

• Allocation of dynamic memory: unknown time for memory

management. Difficult to handle for an analysis tool.

12



Analyzing Execution Time

Problems:

• goto: data flow difficult to find out.

• Caches and multi-threaded execution: with single threaded

applications caches can be handled well, with multi-threaded

application pessimistic assumption that each context switch causes

cache misses.

The general problem of the approach is that it is very pessimistc. The

actual longest execution time might be substantially smaller than the

analysis response. However, the analytical approach is the only choice to

obtain formal guarantees.

13



WCET Analysis Tools

Three phases:

• Flow analysis: calculate all possible execution paths in the program,

in order to limit the maximum number of times the different

instruction types can be executed.

• Low-level analysis: calculates the execution time of the instructions

on the given hardware.

• WCET calculation: combine the previous steps.

For the uniprocessor case with simple cache structures and single

threaded applications, results are typically only 10-15% bigger than the

true WCET. For multi-threaded applications or multicore platforms the

pessimism increases.

14



Scheduling Approaches



Notation

Notation Description

Ci Worst case execution time of task i

Ti Period of task i

Di Relative deadline of task i

CPU Utilization: U =
∑N

i=1

Ci

Ti

15



Notation

Period

Response time

Relative deadline

τ

Release time Absolute deadline

t

16



The critical instant

It can be shown that, in the uni-processor case, the worst situation from

a schedulability perspective occurs when all the tasks want to start their

execution at the same time instant. This is known as the critical instant.

If the task set is schedulable in this situation it will also be schedulable in

other situations. If we can show that the task set is schedulable for the

worst-case execution times, the task set will be schedulable if execution

times are shorter. In uni-processor analysis, we just need to check

for the worst case execution time and the critical instant.

17



Scheduling Approaches

• Static Cyclic Scheduling

• Fixed Priority Scheduling

• Earliest Deadline Scheduling

• Reservation Based Scheduling

18



Static Cyclic Scheduling

• Offline approach.

• Configuration algorithm generates an execution table (or calendar)

using many different algorithms (optimization).

• The table repeats cyclically. The runtime dispatcher simply follows

the table (sets up an hardware interrupt when a context switch

should be performed, starts the first task in calendar, when the

hardware interrupt arrives the first task is preempted and the second

is run).

• Both preemptive and non-preemptive scheduling.

19



Static Cyclic Scheduling: analysis

• Analysis: trivial, run through the table and check timing

requirements.

• Limitations: can only handle periodic tasks, aperiodic are made

periodic using polling; the task calendar cannot be too large

(shortest repeating cycle is the hyperperiod – the least common

multiple, LCM, of the task periods – example: periods 5, 10 and 20

gives a cycle of 20, periods 7, 13 and 23 gives a cycle of 2093 – to

reduce the calendar the periods can be made shorter).

20



Static Cyclic Scheduling: analysis

• Advantages: a number of different constraints can be handled – for

example exclusion constraints, precedence constraints. It is possible

to use constraint programming to find a schedule.

• Disadvantages: inflexible (static design), building a schedule is

NP-hard (potentially even if a schedule exists it can be difficult to

find, good heuristic algorithms).

21



Static Cyclic Scheduling: example

Task Name T D C

A 5 5 2

B 10 10 4

CPU Utilization: U =
∑n

i=1

Ci

Ti

=
2

5
+

4

10
= 0.8

Schedule lenght: LCM(5, 10) = 10

22



Static Cyclic Scheduling: example

Schedule (repeat):

• from 0 to 2, task A;

• from 2 to 6, task B;

• from 6 to 8, task A;

• from 8 to 10, no task.

Worst case response time for task A: 3 ≤ DA

Worst case response time for task B: 6 ≤ DB

23



Static Cyclic Scheduling: implementation

CurrentTime(t);

LOOP

A();

B();

A();

IncTime(t, 10);

WaitUntil(t);

END;

Problem: what if it only takes 2 time units to execute task B? Then A

would start before it should.

24



Static Cyclic Scheduling: implementation

CurrentTime(t);

LOOP

A();

IncTime(t, 2);

WaitUntil(t);

B();

IncTime(t, 4);

WaitUntil(t);

A();

IncTime(t, 4);

WaitUntil(t);

END;

25



Fixed Priority Scheduling

• Each task has a fixed priority.

• The dispatcher selects the task with the highest priority.

• Preemptive.

• Used in most real-time kernels and real-time operating systems.

26



Fixed Priority Scheduling: Rate Monotonic

• Rate Monotonic is a scheme for assigning priorities to tasks.

• Priorities are set monotonically with rate.

• A task with a shorter period is assigned a higher priority.

• Introduced in C.L. Liu and J.W. Layland, Scheduling Algorithms for

Multiprogramming in a Hard Real-Time Environment, JACM, Vol.

20, Number 1, 1973.

27



Fixed Priority Scheduling: Rate Monotonic analysis

Model:

• Periodic tasks,

• Di = Ti ,

• Tasks are not allowed to be blocked or to suspend themselves,

• Priorites are unique,

• Task execution times bounded by Ci ,

• Task utilization Ui =
Ci

Ti
,

• Interrupts and context switches take zero time.

28



Fixed Priority Scheduling: Rate Monotonic analysis

Result:

• If the task set has a utilization below a utilization bound then all

deadlines will be met.

U =

n
∑

i=1

Ci

Ti

≤ n(21/n − 1)

Sufficient condition (if the utilization is larger than the bound, the task

set may still be schedulable).

As n → ∞ the utilization bound tends to 0.692 (log 2). If the CPU

utilization is less than 69% all the deadlines are met.

Alternative (tighter) test – Hyperbolic Bound:

n
∏

i=1

(
Ci

Ti

+ 1) ≤ 2

29



Fixed Priority Scheduling: Rate Monotonic analysis

Since 1973 the models have become more flexible and the analysis better;

M. Joseph and P. Pandaya, Finding Response Times in a Real-Time

System, The Computer Journal, Vol. 29, No. 5, 1986.

Notation:

Notation Description

Ci Worst-case execution time of task i

Ti Period of task i

Di Relative deadline of task i

Ri Worst-case response time of task i

30



Fixed Priority Scheduling: Rate Monotonic analysis

Scheduling test: Ri ≤ Di (necessary and sufficient)

Model:

Di ≤ Ti , Ri = Ci +
∑

∀j∈hp(i)

⌈

Ri

Tj

⌉

Cj

where hp(i) is the set of tasks of higher priority than task i . The function

⌈x⌉ is the ceiling function that returns the smallest integer ≥ x .

Recurrence relation, solved by iteration. The smallest solution is searched

for.

Rn+1
i = Ci +

∑

∀j∈hp(i)

⌈

Rn
i

Tj

⌉

Cj

Start with R0
i = 0.

31



Fixed Priority Scheduling: Rate Monotonic analysis

Limitations of the exact analysis: if the response time is larger than the

period then the quantitative value cannot be trusted

• Reason: The analysis does not take interference from previous jobs

of the same task into account.

• More advanced analysis exists.

However, one still knows that the deadline won’t be met, which is

normally what one is interested in.

32



Fixed Priority Scheduling: Rate Monotonic analysis

Best-case response time:

Under rate-monotonic priority assignment one can also calculate the

best-case response time Rb
i of a task i .

Rb
i = Cmin

i +
∑

∀j∈hp(i)

⌈

Rb
i − Tj

Tj

⌉

0

Cmin

j

where Cmin

i is the best-case execution time of the task and

⌈x⌉0 = max(0, ⌈x⌉).

Can be used to calculate the worst-case input-output latency of a control

task.

33



Fixed Priority Scheduling: Rate Monotonic example

Task name T D C Priority

A 52 52 12 low

B 40 40 10 medium

C 30 30 10 hight

Original (approximative) analysis:

∑3
i=1

Ci

Ti

= 0.814.

3(21/3 − 1) = 0.7798. Using this analysis we cannot say if the task set is

schedulable or not.

Hyperbolic bound:

∏3
i=1(

Ci

Ti

+ 1) = 2.0508 (not ≤ 2). Using this analysis we cannot say if

the task set is schedulable or not.

34



Fixed Priority Scheduling: Rate Monotonic example

Task name T D C Priority

A 52 52 12 low

B 40 40 10 medium

C 30 30 10 hight

Exact analysis:

R
0
C = 0,R

1
C = CC = 10,R

2
C = CC = 10

R
0
B = 0,R1

B = CB = 10,

R
2
B = CB +

⌈

10

TC

⌉

CC = 20,

R
3
B = . . . = 20

R
0
A = 0,R1

A = CA = 12,

R
2
A = CA +

⌈

12

TB

⌉

CB +

⌈

12

TC

⌉

CC = CA + CB + CC = 32

R
3
A = . . . = 42,R4

A = . . . = 52,R5
A = . . . = 52

Ri ≤ Di ⇒ schedulable

35



Fixed Priority Scheduling: Rate Monotonic example

Task C has highest priority → will not be interrupted and hence

RC = CC = 10 (R1
C )

Task B has medium priority. The response time will be at least equal to

CB = 10 (R1
B). During that time B will be interrupted once by C.

Hence, the response time will be extended by the execution time of C,

i.e. R2
B = 10 + 10 = 20. During this time B will only be interrupted once

by C and that has already been accounted for, i.e. R3
B = 20.

Task A has lowest priority. The response will be at least equal to

CA = 12 (R1
A). During that time A will be interrupted once by C and

once by B, i.e., R2
A = 12 + 10 + 10 = 32. During this time A will be

interrupted twice by C and once by B, i.e., R3
A = 32 + 10 = 42. During

this time A will be interrupted twice by C and twice by B, i.e.,

R4
A = 42 + 10 = 52. During this time no more unaccounted for interrupts

will occur, i.e., R5
A = 52.

36



Fixed Priority Scheduling: Deadline Monotonic

• The rate monotonic policy is not very good when D ≤ T .

• An infrequent but urgent task would still be given a low priority.

• The deadline monotonic ordering policy works better.

• A task with a short relative deadline D gets a high priority.

• This policy has been proved optimal when D ≤ T (if the system is

unschedulable with the deadline monotonic ordering then it is

unschedulable with all other orderings).

• With D ≤ T we can control the jitter in control delay.

37



Fixed Priority Scheduling: Deadline Monotonic analysis

For a system with n tasks, all tasks will meet their deadlines if the sum

over all tasks of the ratio between the worst-case execution time of the

task and the deadline of the task is below a certain bound.

n
∑

i=1

Ci

Di

≤ n(21/n − 1)

38



Fixed Priority Scheduling: Deadline Monotonic analysis

Exact Analysis:

The response time calculations from the rate monotonic theory is also

applicable to deadline monotonic scheduling. Response time calculation

does not make any assumptions on the priority assignment rule.

39



Fixed Priority Scheduling: Extension – the blocking problem

How should interprocess communication be handled.

The analysis up to now does not allow tasks to share data under mutual

exclusion constraints (e.g. no semaphores or monitors)

Main problem:

• a task i might want to lock a semaphore,

but the semaphore might be held by a lower priority task;

• task i is blocked.

40



Fixed Priority Scheduling: Extension – the blocking problem

The blocking factor, Bi is the longest time a task i can be delayed by the

execution of lower priority tasks

Ri = Ci + Bi +
∑

∀j∈hp(i)

⌈

Ri

Tj

⌉

Cj

Priority inversion may cause unbounded blocking time if ordinary locks

are used.

Different locking schemes have different blocking times:

• ordinary priority inheritance;

• priority ceiling protocol;

• immediate inheritance protocol.

41



Fixed Priority Scheduling: Further extensions

• Release Jitter: the difference between the earliest and latest release

of a task relative to the invocation of the task;

• Context Switch Overheads;

• Clock Interrupt Overheads;

• Distributed systems using CAN.

42



Fixed Priority Scheduling: Overrun behavior

• Overrun means exceeding the worst-case execution time.

• With fixed priority schemes, this will only affect the current task and

lower priority ones. These tasks can miss deadlines and/or not get

any execution time at all. Higher priority tasks are unaffected.

43



Earliest Deadline First (EDF) Scheduling

• Dynamic Approach: all scheduling decisions are made online.

• The task with the absolute smallest deadline runs.

• Preemptive.

• Ready-queue sorted in deadline order.

• Dynamic priorities. It is more intuitive to assign deadlines to tasks

than priorities. Requires only local knowledge.

44



Earliest Deadline First (EDF) Scheduling: analysis

Simplest Model:

• Periodic Tasks,

• Each task i has a period Ti , a worst-case computation time

requirement Ci and a relative deadline Di ,

• Tasks are independent,

• The kernel is ideal,

• Di = Ti .

45



Earliest Deadline First (EDF) Scheduling: analysis

Result:

• If the utilization U of the system is not more than 100% then all the

deadlines are met.

U =

n
∑

i=1

Ci

Ti

≤ 1

Necessary and sufficient condition. Advantage: the processor can be fully

used. Less restrictive assumptions make the analysis harder (see RTCS

for the analysis in the case Di ≤ Ti).

46



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: example

Task name T D C

A 8 8 1

B 5 5 2

C 10 10 4

Utilization: 1/8 + 2/5 + 4/10 = 0.925

t

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

47



Earliest Deadline First (EDF) Scheduling: overrun behavior

In the case of overrun all tasks will be affected, so they may all miss

deadlines (there is a “domino” effect). However, in general EDF is more

fair than priority-based scheduling – the available resources are

distributed among all the tasks.

48



Earliest Deadline First (EDF) Scheduling: summary

Also for EDF there exists a very well-developed schedulability theory.

Resource access protocols similar to priority inheritance and ceiling.

49



Reservation Based Scheduling

If a tasks overruns (executes longer than anticipated) this will effect

other tasks negatively.

• In priority-based systems the priority decides which tasks that will be

effected.

• In deadline-based systems all tasks will be effected.

We want to provide temporal protection between tasks that guarantees

that a certain task or group of tasks receives a certain amount of the

CPU time.

50



Reservation Based Scheduling: static and dynamic

Use static cyclic scheduling for some tasks and let the other tasks be

priority-based (event-based) which only may execute during the idle

periods of the static schedule.

Used in Rubus from Arcticus:

• swedish RTOS used by Volvo,

• red threads - statically scheduled,

• blue threads - dynamically scheduled.

51



Reservation Based Scheduling: priority-based systems

How can, conceptually, a reservation-based scheduling system be

implemented on top of ordinary priority-based scheduling. Each task or

task set receives a certain percentage of the CPU. (50% + 30% + 20%).

Can be viewed as if the tasks are executed on a correspondingly much

slower CPU.

Two variants:

• Each task set gets exactly its share of the CPU;

• Each task set gets at least its share of the CPU.

Question: Over which time horizon does the CPU reservation hold?

52



Reservation Based Scheduling: priority-based systems

Each task set gets exactly its share of the CPU.

The scheduler can be viewed as consisting of as many ready-queues as

there are reservation sets.

An external timer is set up to generate interrupts when it is time to

switch which ready-queue that is active.

One idle process in each ready-queue.

53



Reservation Based Scheduling: priority-based systems

Each task set gets at least its share of the CPU.

One ready-queue.

Make sure that the tasks belonging to the currently serviced task set all

have higher priority than the tasks in the tasks sets which are not

serviced.

An external timer is set up to generate interrupts when it is time to

switch between the tasks sets.

Lower the priorities of the the tasks that have been serviced and raise the

priorities of the tasks that should be serviced.

A single idle task.

54



Reservation Based Scheduling: SCHED DEADLINE

In Mainline Linux Kernel since 2 Feb 2014 17:12:22 (Linux 3.14.2).

55



Reservation Based Scheduling: Industrial practice

Beginning to emerge in commercial RTOS.

Integrity from Green Hills Software Inc.

56



More Information

A nice introduction and overview of the state-of-the-art in uni-processor

scheduling of real-time systems can be found in:

“Real Time Systems by Fixed Priority Scheduling” by Ken Tindell and

Hans Hansson, Dept. of Computer Systems, Uppsala University

http://www.docs.uu.se/˜hansh/fpsnotes-9710.ps

57


	Introduction
	Execution Time Estimation
	Scheduling Approaches
	Static Cyclic Scheduling
	Fixed Priority Scheduling
	Earliest Deadline Scheduling
	Reservation Based Scheduling


