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Lecture 11: Implementation Aspects

[IFAC PB Chapter 12, RTCS Chapter 11]

• Sampling, aliasing, and choice of sampling interval

• Computational delay

• Finite wordlength implementation

• A-D and D-A quantization

• Floating point and fixed point arithmetic

• Controller realizations
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Sampling and Aliasing

Recall this example from Lecture 6:
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y1(t) = sin
(
1.8πt− π

)

y2(t) = sin
(
0.2πt

)

h = 1, ωs = 2π ⇒

sin(0.2πkh) = sin(1.8πkh− π) = sin(2.2πkh) = sin(3.8πkh− π) . . .
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Aliasing

Sampling a signal with frequency ω creates new signal components with

frequencies

ωsampled = ±ω + nωs

where ωs = 2π/h is the sampling frequency and n ∈ Z

Nyquist frequency:

ωN = ωs/2

The fundamental alias for a signal with frequency ω1 is given by

ω = |(ω1 + ωN ) mod (ωs) − ωN |

(This frequency lies in the interval 0 ≤ ω < ωN )
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Antialiasing Filter

Low-pass filter that attenuates all frequencies above the Nyquist

frequency before sampling. Must contain analog part!

Options:

• Analog filter

• E.g. 2–6th order Bessel or Butterworth filter

• Difficult to change sampling interval

• Analog + digital filter

• Fixed, fast sampling with fixed analog filter

• Downsampling using digital LP-filter

• Control algorithm at the lower rate

• Easier to change sampling interval
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Example: Second-Order Bessel Filter

Gf (s) =
ω2

(s/ωB)2 + 2ζω(s/ωB) + ω2
, ω = 1.27, ζ = 0.87

ωB = 1 :
Bode Diagram
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Antialiasing Filter and Control Design

As a rule of thumb, the cut-off frequency of the filter should be chosen so

that frequencies above ωN are attenuated by at least a factor 10:

|Gf (iωN)| ≤ 0.1

Unless extremely fast sampling is used, the filter will affect the phase

margin of the system

Include the filter in the process description or approximate it by a delay

• Digital design: E.g. 2nd order Bessel filter: τ ≈ 1.3/ωB. If

|Gf (iωN)| = 0.1 then τ ≈ 1.5h

• Analog design + discretization: must sample fast
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Choice of Sampling Interval – Digital Design

Common rule of thumb:

ωh ≈ 0.1 to 0.6

ω is the desired natural frequency of the closed-loop system

Gives about 4 to 20 samples per rise time
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Choice of Sampling Interval – Analog Design

Sampler + ZOH ≈ delay of 0.5h ⇔ e−s0.5h

Antialiasing filter ≈ delay of 1.5h ⇔ e−s1.5h

Will affect phase margin (at cross-over frequency ωc) by

arg e−iωc2h = −2ωch

Assume phase margin can be decreased by 5◦ to 15◦

(= 0.087 to 0.262 rad). Then

ωch ≈ 0.04 to 0.13
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Computational delay

Problem: u(k) cannot be generated instantaneously at time k when y(k)

is sampled. Options:
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Case A: One sample delay

Controllers without direct term (D = Dc = 0)

A general linear controller in state-space form (including state feedback,

observer, reference model, etc.):

xc(k + 1) = Fxc(k) +Gy(k) +Gcuc(k)

u(k) = Cxc(k)

Output the control signal at the beginning of next sampling interval

CurrentTime(t);

LOOP

daout(u);

y := adin(1);

uc := adin(2);

/* Update State */

xc := F*xc + G*y + Gc*uc;

u := C*xc;

IncTime(t, h);

WaitUntil(h);

END;
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Case B: Minimize the computational delay

Controllers with direct term (D 6= 0 or Dc 6= 0)

A general linear controller in state-space form:

xc(k + 1) = Fxc(k) +Gy(k) +Gcuc(k)

u(k) = Cxc(k) +Dy(k) +Dcuc(k)

Do as little as possible between the input and the output:

CurrentTime(t);

LOOP

y := adin(1);

uc := adin(2);

/* Calculate Output */

u := u1 + D*y + Dc*uc;

daout(u);

/* Update State */

xc := F*xc + G*y + Gc*uc;

u1 := C*xc;

IncTime(t, h);

WaitUntil(h);

END;
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Finite-Wordlength Implementation

Control analysis and design usually assumes infinite-precision arithmetic

All parameters/variables are assumed to be real numbers

Error sources in a digital implementation with finite wordlength:

• Quantization in A-D converters

• Quantization of parameters (controller coefficients)

• Round-off and overflow in addition, subtraction, multiplication,

division, function evaluation and other operations

• Quantization in D-A converters
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Finite-Wordlength Implementation

The magnitude of the problems depends on

• The wordlength

• The type of arithmetic used (fixed or floating point)

• The controller realization
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A-D and D-A Quantization

A-D and D-A converters often have quite poor resolution, e.g.

• A-D: 10–16 bits

• D-A: 8–12 bits

Quantization is a nonlinear phenomenon; can lead to limit cycles and

bias. Analysis approaches (outside scope of this course):

• Nonlinear analysis

• Describing function approximation

• Theory of relay oscillations

• Linear analysis

• Quantization as a stochastic disturbance
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Example: Control of the Double Integrator

Process:

P (s) = 1/s2

Sampling period:

h = 1

Controller (PID):

C(z) =
0.715z2 − 1.281z + 0.580

(z − 1)(z + 0.188)

15



Simulation with Quantized A-D Converter (δy = 0.02)
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Simulation with Quantized D-A Converter (δu = 0.01)
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Pulse-Width Modulation (PWM)

Poor D-A resolution (e.g. 1 bit) can often be handled by fast switching

between fixed levels + low-pass filtering

PWM parameters:

• umin

• umax

• period T

• duty cycle D(k) (0–100%)

PWM output in kth interval:

u(t) =

{

umax, kT ≤ t < kT +D(k)T

umin, kT +D(k)T ≤ t < (k + 1)T

Average output: ū(k) = D(k)umax + (1−D(k))umin
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Pulse-Width Modulation (PWM)

Example (umin = −1, umax = 1, T = 1, first-order output filter):

0 2 4 6 8 10 12 14 16 18 20

−1.5

−1

−0.5

0

0.5

1

1.5

Time

O
u

tp
u

t

PWM Output
Filtered PWM Output
Desired Output

19



Floating-Point Arithmetic

Hardware-supported on modern high-end processors (FPUs)

Number representation:

±f × 2±e

• f : mantissa, significand, fraction

• 2: base

• e: exponent

The binary point is variable (floating) and depends on the value of the

exponent

Dynamic range and resolution

Fixed number of significant digits
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IEEE 754 Binary Floating-Point Standard

Used by almost all FPUs; implemented in software libraries

Single precision (Java/C float):

• 32-bit word divided into 1 sign bit, 8-bit biased exponent, and 23-bit

mantissa (≈ 7 significant digits)

• Magnitude range: 2−126 − 2128

Double precision (Java/C double):

• 64-bit word divided into 1 sign bit, 11-bit biased exponent, and

52-bit mantissa (≈ 15 significant digits)

• Magnitude range: 2−1022 − 21024

Supports Inf and NaN
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What is the output of this C program?

#include <stdio.h>

int main() {

float a[] = { 10000.0, 1.0, 10000.0 };

float b[] = { 10000.0, 1.0, -10000.0 };

float sum = 0.0;

int i;

for (i=0; i<3; i++)

sum += a[i]*b[i];

printf("sum = %f\n", sum);

return 0;

}
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What is the output of this C program?

Conclusions:

• The result depends on the order of the operations

• Finite-wordlength operations are neither associative nor distributive
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Arithmetic in Embedded Systems

Small microprocessors used in embedded systems typically do not have

hardware support for floating-point arithmetic

Options:

• Software emulation of floating-point arithmetic

• compiler/library supported

• large code size, slow

• Fixed-point arithmetic

• often manual implementation

• fast and compact
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Fixed-Point Arithmetic

Represent all numbers (parameters, variables) using integers

Use binary scaling to make all numbers fit into one of the integer data

types, e.g.

• 8 bits (char, int8 t): [−128, 127]

• 16 bits (short, int16 t): [−32768, 32767]

• 32 bits (long, int32 t): [−2147483648, 2147483647]
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Challenges

• Must select data types to get sufficient numerical precision

• Must know (or estimate) the minimum and maximum value of every

variable in order to select appropriate scaling factors

• Must keep track of the scaling factors in all arithmetic

operations

• Must handle potential arithmetic overflows
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Fixed-Point Representation

In fixed-point representation, a real number x is represented by an integer

X with N = m+ n+ 1 bits, where

• N is the wordlength

• m is the number of integer bits (excluding the sign bit)

• n is the number of fractional bits

Sign bit

Integer bits Fractional bits

0 00 11111

20212223 2−1 2−2 2−3

“Q-format”: X is sometimes called a Qm.n or Qn number
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Conversion to and from fixed point

Conversion from real to fixed-point number:

X := round(x · 2n)

Conversion from fixed-point to real number:

x := X · 2−n

Example: Represent x = 13.4 using Q4.3 format

X = round(13.4 · 23) = 107 (= 011010112)

Sign bit Integer bits Fractional bits

0 00 11111
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Negative Numbers

In almost all CPUs today, negative integers are handled using two’s

complement: A “1” in the sign bit means that 2N should be subtracted

from the stored value

Example (N = 8):

Binary representation Interpretation

00000000 0

00000001 1

.

.

.
.
.
.

01111111 127

10000000 -128

10000001 -127

.

.

.
.
.
.

1111111 -1

29



Range vs Resolution for Fixed-Point Numbers

A Qm.n fixed-point number can represent real numbers in the range

[−2m, 2m − 2−n]

while the resolution is

2−n

Fixed range and resolution

• n too small ⇒ poor resolution

• n too large ⇒ risk of overflow
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Example: Choose number of integer and fractional bits

We want to store x in a signed 8-bit variable.

We know that −28.3 < x < 17.5.

We hence need m = 5 bits to represent the integer part.

(24 = 16 < 28.3 < 32 = 25)

n = 8− 1−m = 2 bits are left for the fractional part.

x should be stored in Q5.2 format
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Fixed-Point Addition/Subtraction

Two fixed-point numbers in the same Qm.n format can be added or

subtracted directly

The result will have the same number of fractional bits

z = x+ y ⇔ Z = X + Y

z = x− y ⇔ Z = X − Y

• The result will in general require N + 1 bits; risk of overflow
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Example: Addition with Overflow

Two numbers in Q4.3 format are added:

x = 12.25 ⇒ X = 98

y = 14.75 ⇒ Y = 118

Z = X + Y = 216

This number is however out of range and will be interpreted as

216− 256 = −40 ⇒ z = −5.0
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Example: Addition with Overflow

0 0 00

0 0 0

0 0 000

1 1 11

1 1 111

111

+

=
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Fixed-Point Multiplication and Division

If the operands and the result are in the same Q-format,

multiplication and division are done as

z = x · y ⇔ Z = (X · Y )/2n

z = x/y ⇔ Z = (X · 2n)/Y

• Double wordlength is needed for the intermediate result

• Division by 2n is implemented as a right-shift by n bits

• Multiplication by 2n is implemented as a left-shift by n bits

• The lowest bits in the result are truncated (round-off noise)

• Risk of overflow
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Example: Multiplication

Two numbers in Q5.2 format are multiplied:

x = 6.25 ⇒ X = 25

y = 4.75 ⇒ Y = 19

Intermediate result:

X · Y = 475

Final result:

Z = 475/22 = 118 ⇒ z = 29.5

(exact result is 29.6875)
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Example: Multiplication

0 00 00

00 0

0

0

0000 0 00 0

0 00 0

1 11

111 11

11 1

1

1 1 1 1

1 1

×

=
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Example: Division

Two numbers in Q3.4 format are divided:

x = 5.375 ⇒ X = 86

y = 6.0625 ⇒ Y = 97

Not associative:

Zbad = (X/Y ) · 24 = (86/97) · 24 = 0 · 24 = 0

Zgood = (X · 24)/Y = 1376/97 = 14 ⇒ z = 0.875

(correct first 6 digits are 0.888531)
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Multiplication of Operands with Different Q-format

In general, multiplication of two fixed-point numbers Qm1.n1 and

Qm2.n2 gives an intermediate result in the format

Qm1+m2.n1+n2

which may then be right-shifted n1+n2−n3 steps and stored in the

format

Qm3.n3

Common case: n2 = n3 = 0 (one real operand, one integer operand,

and integer result). Then

Z = (X · Y )/2n1
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Implementation of Multiplication in C

Assume Q4.3 operands and result

#include <inttypes.h> /* define int8_t, etc. (Linux only) */

#define n 3 /* number of fractional bits */

int8_t X, Y, Z; /* Q4.3 operands and result */

int16_t temp; /* Q9.6 intermediate result */

...

temp = (int16_t)X * Y; /* cast operands to 16 bits and multiply */

temp = temp >> n; /* divide by 2^n */

Z = temp; /* truncate and assign result */
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Implementation of Multiplication in C with Rounding and Sat-

uration

#include <inttypes.h> /* defines int8_t, etc. (Linux only) */

#define n 3 /* number of fractional bits */

int8_t X, Y, Z; /* Q4.3 operands and result */

int16_t temp; /* Q9.6 intermediate result */

...

temp = (int16_t)X * Y; /* cast operands to 16 bits and multiply */

temp = temp + (1 << n-1); /* add 1/2 to give correct rounding */

temp = temp >> n; /* divide by 2^n */

if (temp > INT8_MAX) /* saturate the result before assignment */

Z = INT8_MAX;

else if (temp < INT8_MIN)

Z = INT8_MIN;

else

Z = temp;
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Implementation of Division in C with Rounding

#include <inttypes.h> /* define int8_t, etc. (Linux only) */

#define n 3 /* number of fractional bits */

int8_t X, Y, Z; /* Q4.3 operands and result */

int16_t temp; /* Q9.6 intermediate result */

...

temp = (int16_t)X << n; /* cast operand to 16 bits and shift */

temp = temp + (Y >> 1); /* Add Y/2 to give correct rounding */

temp = temp / Y; /* Perform the division (expensive!) */

Z = temp; /* Truncate and assign result */
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Atmel mega8/16 instruction set

Mnemonic Description # clock cycles

ADD Add two registers 1

SUB Subtract two registers 1

MULS Multiply signed 2

ASR Arithmetic shift right (1 step) 1

LSL Logical shift left (1 step) 1

• No division instruction; implemented in math library using expensive

division algorithm
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Laboratory Exercise 3

• Control of a rotating DC servo using the ATmega16
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• Velocity control (PI controller)

• Position control (state feedback from extended observer)

• Floating-point and fixed-point implementations

• Measurement of code size (and possibly execution time)
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Controller Realizations

A linear controller

H(z) =
b0 + b1z

−1 + . . .+ bnz
−n

1 + a1z−1 + . . .+ anz−n

can be realized in a number of different ways with equivalent

input-output behavior, e.g.

• Direct form

• Companion (canonical) form

• Series (cascade) or parallel form
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Direct Form

The input-output form can be directly implemented as

u(k) =

n∑

i=0

biy(k − i)−

n∑

i=1

aiu(k − i)

• Nonminimal (all old inputs and outputs are used as states)

• Very sensitive to roundoff in coefficients

• Avoid!
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Companion Forms

E.g. controllable or observable canonical form

x(k + 1) =





−a1 −a2 · · · −an−1 −an

1 0 0 0

0 1 0 0
...

0 0 1 0





x(k) +





1

0
...

0





y(k)

u(k) =


 b1 b2 · · · bn



 x(k)

• Same problem as for the Direct form

• Very sensitive to roundoff in coefficients

• Avoid!
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Better: Series and Parallel Forms

Divide the transfer function of the controller into a number of first- or

second-order subsystems:

+

Direct Form Series Form

Parallel Form

H(z)

H1(z)

H1(z)

H2(z)

H2(z)

• Try to balance the gain such that each subsystem has about the

same amplification
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Example: Series and Parallel Forms

C(z) =
z4 − 2.13z3 + 2.351z2 − 1.493z + 0.5776

z4 − 3.2z3 + 3.997z2 − 2.301z + 0.5184
(Direct)

=
(z2 − 1.635z + 0.9025

z2 − 1.712z + 0.81

)(z2 − 0.4944z + 0.64

z2 − 1.488z + 0.64

)

(Series)

= 1 +
−5.396z + 6.302

z2 − 1.712z + 0.81
+

6.466z − 4.907

z2 − 1.488z + 0.64
(Parallel)
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Example: Direct Form

Direct form with quantized coefficients (N = 8, n = 4):

Bode Diagram
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Example: Direct Form

Pole−Zero Map
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Example: Series Form

Series form with quantized coefficients (N = 8, n = 4):

Bode Diagram
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Example: Series Form

Pole−Zero Map
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Jackson’s Rules for Series Realizations

How to pair and order the poles and zeros?

Jackson’s rules (1970):

• Pair the pole closest to the unit circle with its closest zero. Repeat

until all poles and zeros are taken.

• Order the filters in increasing or decreasing order based on the poles

closeness to the unit circle.

This will push down high internal resonance peaks.
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Short Sampling Interval Modification

In the state update equation

x(k + 1) = Φx(k) + Γy(k)

the system matrix Φ will be close to I if h is small. Round-off errors in

the coefficients of Φ can have drastic effects.

Better: use the modified equation

x(k + 1) = x(k) + (Φ− I)x(k) + Γy(k)

• Both Φ− I and Γ are roughly proportional to h

• Less round-off noise in the calculations

• Also known as the δ-form
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Short Sampling Interval and Integral Action

Fast sampling and slow integral action can give roundoff problems:

I(k + 1) = I(k) + e(k) · h/Ti
︸ ︷︷ ︸

≈0

Possible solutions:

• Use a dedicated high-resolution variable (e.g. 32 bits) for the I-part

• Update the I-part at a slower rate

(This is a general problem for filters with very different time constants)
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