
Implementation Aspects

Real-Time Systems, Lecture 11

Martina Maggio

14 February 2017

Lund University, Department of Automatic Control

www.control.lth.se/course/FRTN01

www.control.lth.se/course/FRTN01


Lecture 11: Implementation Aspects

[IFAC PB Chapter 12, RTCS Chapter 11]

• Sampling, aliasing, and choice of sampling interval

• Computational delay

• Finite wordlength implementation

• A-D and D-A quantization

• Floating point and fixed point arithmetic

• Controller realizations

1



Sampling and Aliasing

Recall this example from Lecture 6:

0 5 10

−1

0

1

Time

y1(t) = sin
(
1.8πt− π

)

y2(t) = sin
(
0.2πt

)

h = 1, ωs = 2π ⇒

sin(0.2πkh) = sin(1.8πkh− π) = sin(2.2πkh) = sin(3.8πkh− π) . . .

2



Aliasing

Sampling a signal with frequency ω creates new signal components with

frequencies

ωsampled = ±ω + nωs

where ωs = 2π/h is the sampling frequency and n ∈ Z

Nyquist frequency:

ωN = ωs/2

The fundamental alias for a signal with frequency ω1 is given by

ω = |(ω1 + ωN ) mod (ωs) − ωN |

(This frequency lies in the interval 0 ≤ ω < ωN )

3



Antialiasing Filter

Low-pass filter that attenuates all frequencies above the Nyquist

frequency before sampling. Must contain analog part!

Options:

• Analog filter

• E.g. 2–6th order Bessel or Butterworth filter

• Difficult to change sampling interval

• Analog + digital filter

• Fixed, fast sampling with fixed analog filter

• Downsampling using digital LP-filter

• Control algorithm at the lower rate

• Easier to change sampling interval

4



Example: Second-Order Bessel Filter

Gf (s) =
ω2

(s/ωB)2 + 2ζω(s/ωB) + ω2
, ω = 1.27, ζ = 0.87

ωB = 1 :
Bode Diagram

Frequency (rad/sec)

P
h

a
s
e

 (
d

e
g

)
M

a
g

n
it
u

d
e

 (
a

b
s
)

10
−2

10
−1

10
0

10
−1

10
0

10
1

−180

−135

−90

−45

0

5



Antialiasing Filter and Control Design

As a rule of thumb, the cut-off frequency of the filter should be chosen so

that frequencies above ωN are attenuated by at least a factor 10:

|Gf (iωN)| ≤ 0.1

Unless extremely fast sampling is used, the filter will affect the phase

margin of the system

Include the filter in the process description or approximate it by a delay

• Digital design: E.g. 2nd order Bessel filter: τ ≈ 1.3/ωB. If

|Gf (iωN)| = 0.1 then τ ≈ 1.5h

• Analog design + discretization: must sample fast

6



Choice of Sampling Interval – Digital Design

Common rule of thumb:

ωh ≈ 0.1 to 0.6

ω is the desired natural frequency of the closed-loop system

Gives about 4 to 20 samples per rise time

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Time

O
ut

pu
t

ω h = 0.6

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Time

O
u

tp
u

t

ω h = 0.1

7



Choice of Sampling Interval – Analog Design

Sampler + ZOH ≈ delay of 0.5h ⇔ e−s0.5h

Antialiasing filter ≈ delay of 1.5h ⇔ e−s1.5h

Will affect phase margin (at cross-over frequency ωc) by

arg e−iωc2h = −2ωch

Assume phase margin can be decreased by 5◦ to 15◦

(= 0.087 to 0.262 rad). Then

ωch ≈ 0.04 to 0.13

8



Computational delay

Problem: u(k) cannot be generated instantaneously at time k when y(k)

is sampled. Options:

y

    y(tk−1)

    y(tk )

    y(tk+1)

Time

u

    t k−1   t k     tk+1

    u(tk− 1)

    u(t k)

Time

C
o
n

tr
o
l 

V
a

ri
a

b
le

M
e
a

su
re

d
 V

a
ri

a
b

le

Case B

    y(tk−1)

    y(tk )

    y(t k+1)
y

Time    t k−1   t k     t k+1

    u(tk )

    u(tk+ 1)
u

Time

C
o
n

tr
o
l 

V
a

ri
a

b
le

M
e
a

su
re

d
 V

a
ri

a
b

le

Case A

Computa-
tional
lag   τ = h

Computa-
tional
lag τ

9



Case A: One sample delay

Controllers without direct term (D = Dc = 0)

A general linear controller in state-space form (including state feedback,

observer, reference model, etc.):

xc(k + 1) = Fxc(k) +Gy(k) +Gcuc(k)

u(k) = Cxc(k)

Output the control signal at the beginning of next sampling interval

CurrentTime(t);

LOOP

daout(u);

y := adin(1);

uc := adin(2);

/* Update State */

xc := F*xc + G*y + Gc*uc;

u := C*xc;

IncTime(t, h);

WaitUntil(h);

END;
10



Case B: Minimize the computational delay

Controllers with direct term (D 6= 0 or Dc 6= 0)

A general linear controller in state-space form:

xc(k + 1) = Fxc(k) +Gy(k) +Gcuc(k)

u(k) = Cxc(k) +Dy(k) +Dcuc(k)

Do as little as possible between the input and the output:

CurrentTime(t);

LOOP

y := adin(1);

uc := adin(2);

/* Calculate Output */

u := u1 + D*y + Dc*uc;

daout(u);

/* Update State */

xc := F*xc + G*y + Gc*uc;

u1 := C*xc;

IncTime(t, h);

WaitUntil(h);

END;
11



Finite-Wordlength Implementation

Control analysis and design usually assumes infinite-precision arithmetic

All parameters/variables are assumed to be real numbers

Error sources in a digital implementation with finite wordlength:

• Quantization in A-D converters

• Quantization of parameters (controller coefficients)

• Round-off and overflow in addition, subtraction, multiplication,

division, function evaluation and other operations

• Quantization in D-A converters

12



Finite-Wordlength Implementation

The magnitude of the problems depends on

• The wordlength

• The type of arithmetic used (fixed or floating point)

• The controller realization

13



A-D and D-A Quantization

A-D and D-A converters often have quite poor resolution, e.g.

• A-D: 10–16 bits

• D-A: 8–12 bits

Quantization is a nonlinear phenomenon; can lead to limit cycles and

bias. Analysis approaches (outside scope of this course):

• Nonlinear analysis

• Describing function approximation

• Theory of relay oscillations

• Linear analysis

• Quantization as a stochastic disturbance

14



Example: Control of the Double Integrator

Process:

P (s) = 1/s2

Sampling period:

h = 1

Controller (PID):

C(z) =
0.715z2 − 1.281z + 0.580

(z − 1)(z + 0.188)

15



Simulation with Quantized A-D Converter (δy = 0.02)

0 50 100 150
0

1

O
u

tp
u

t

0 50 100 150

0.98

1.02

O
u

tp
u

t

0 50 100 150
−0.05

0

0.05

Time

In
p

u
t

Limit cycle in process output with period 28 s, amplitude 0.01

(can be predicted with describing function analysis)

16



Simulation with Quantized D-A Converter (δu = 0.01)

0 50 100 150
0

1

O
u

tp
u

t

0 50 100 150
−0.05

0

0.05

U
n

q
u

a
n

ti
z
e
d

0 50 100 150
−0.05

0

0.05

Time

In
p

u
t

Limit cycle in process input with period 39 s, amplitude 0.01

(can be predicted with describing function analysis)

17



Pulse-Width Modulation (PWM)

Poor D-A resolution (e.g. 1 bit) can often be handled by fast switching

between fixed levels + low-pass filtering

PWM parameters:

• umin

• umax

• period T

• duty cycle D(k) (0–100%)

PWM output in kth interval:

u(t) =

{

umax, kT ≤ t < kT +D(k)T

umin, kT +D(k)T ≤ t < (k + 1)T

Average output: ū(k) = D(k)umax + (1−D(k))umin

18



Pulse-Width Modulation (PWM)

Example (umin = −1, umax = 1, T = 1, first-order output filter):

0 2 4 6 8 10 12 14 16 18 20

−1.5

−1

−0.5

0

0.5

1

1.5

Time

O
u

tp
u

t

PWM Output
Filtered PWM Output
Desired Output

19



Floating-Point Arithmetic

Hardware-supported on modern high-end processors (FPUs)

Number representation:

±f × 2±e

• f : mantissa, significand, fraction

• 2: base

• e: exponent

The binary point is variable (floating) and depends on the value of the

exponent

Dynamic range and resolution

Fixed number of significant digits

20



IEEE 754 Binary Floating-Point Standard

Used by almost all FPUs; implemented in software libraries

Single precision (Java/C float):

• 32-bit word divided into 1 sign bit, 8-bit biased exponent, and 23-bit

mantissa (≈ 7 significant digits)

• Magnitude range: 2−126 − 2128

Double precision (Java/C double):

• 64-bit word divided into 1 sign bit, 11-bit biased exponent, and

52-bit mantissa (≈ 15 significant digits)

• Magnitude range: 2−1022 − 21024

Supports Inf and NaN

21



What is the output of this C program?

#include <stdio.h>

int main() {

float a[] = { 10000.0, 1.0, 10000.0 };

float b[] = { 10000.0, 1.0, -10000.0 };

float sum = 0.0;

int i;

for (i=0; i<3; i++)

sum += a[i]*b[i];

printf("sum = %f\n", sum);

return 0;

}

22



What is the output of this C program?

Conclusions:

• The result depends on the order of the operations

• Finite-wordlength operations are neither associative nor distributive

23



Arithmetic in Embedded Systems

Small microprocessors used in embedded systems typically do not have

hardware support for floating-point arithmetic

Options:

• Software emulation of floating-point arithmetic

• compiler/library supported

• large code size, slow

• Fixed-point arithmetic

• often manual implementation

• fast and compact

24



Fixed-Point Arithmetic

Represent all numbers (parameters, variables) using integers

Use binary scaling to make all numbers fit into one of the integer data

types, e.g.

• 8 bits (char, int8 t): [−128, 127]

• 16 bits (short, int16 t): [−32768, 32767]

• 32 bits (long, int32 t): [−2147483648, 2147483647]

25



Challenges

• Must select data types to get sufficient numerical precision

• Must know (or estimate) the minimum and maximum value of every

variable in order to select appropriate scaling factors

• Must keep track of the scaling factors in all arithmetic

operations

• Must handle potential arithmetic overflows

26



Fixed-Point Representation

In fixed-point representation, a real number x is represented by an integer

X with N = m+ n+ 1 bits, where

• N is the wordlength

• m is the number of integer bits (excluding the sign bit)

• n is the number of fractional bits

Sign bit

Integer bits Fractional bits

0 00 11111

20212223 2−1 2−2 2−3

“Q-format”: X is sometimes called a Qm.n or Qn number

27



Conversion to and from fixed point

Conversion from real to fixed-point number:

X := round(x · 2n)

Conversion from fixed-point to real number:

x := X · 2−n

Example: Represent x = 13.4 using Q4.3 format

X = round(13.4 · 23) = 107 (= 011010112)

Sign bit Integer bits Fractional bits

0 00 11111

28



Negative Numbers

In almost all CPUs today, negative integers are handled using two’s

complement: A “1” in the sign bit means that 2N should be subtracted

from the stored value

Example (N = 8):

Binary representation Interpretation

00000000 0

00000001 1

.

.

.
.
.
.

01111111 127

10000000 -128

10000001 -127

.

.

.
.
.
.

1111111 -1

29



Range vs Resolution for Fixed-Point Numbers

A Qm.n fixed-point number can represent real numbers in the range

[−2m, 2m − 2−n]

while the resolution is

2−n

Fixed range and resolution

• n too small ⇒ poor resolution

• n too large ⇒ risk of overflow

30



Example: Choose number of integer and fractional bits

We want to store x in a signed 8-bit variable.

We know that −28.3 < x < 17.5.

We hence need m = 5 bits to represent the integer part.

(24 = 16 < 28.3 < 32 = 25)

n = 8− 1−m = 2 bits are left for the fractional part.

x should be stored in Q5.2 format

31



Fixed-Point Addition/Subtraction

Two fixed-point numbers in the same Qm.n format can be added or

subtracted directly

The result will have the same number of fractional bits

z = x+ y ⇔ Z = X + Y

z = x− y ⇔ Z = X − Y

• The result will in general require N + 1 bits; risk of overflow

32



Example: Addition with Overflow

Two numbers in Q4.3 format are added:

x = 12.25 ⇒ X = 98

y = 14.75 ⇒ Y = 118

Z = X + Y = 216

This number is however out of range and will be interpreted as

216− 256 = −40 ⇒ z = −5.0

33



Example: Addition with Overflow

0 0 00

0 0 0

0 0 000

1 1 11

1 1 111

111

+

=

34



Fixed-Point Multiplication and Division

If the operands and the result are in the same Q-format,

multiplication and division are done as

z = x · y ⇔ Z = (X · Y )/2n

z = x/y ⇔ Z = (X · 2n)/Y

• Double wordlength is needed for the intermediate result

• Division by 2n is implemented as a right-shift by n bits

• Multiplication by 2n is implemented as a left-shift by n bits

• The lowest bits in the result are truncated (round-off noise)

• Risk of overflow

35



Example: Multiplication

Two numbers in Q5.2 format are multiplied:

x = 6.25 ⇒ X = 25

y = 4.75 ⇒ Y = 19

Intermediate result:

X · Y = 475

Final result:

Z = 475/22 = 118 ⇒ z = 29.5

(exact result is 29.6875)

36



Example: Multiplication

0 00 00

00 0

0

0

0000 0 00 0

0 00 0

1 11

111 11

11 1

1

1 1 1 1

1 1

×

=

37



Example: Division

Two numbers in Q3.4 format are divided:

x = 5.375 ⇒ X = 86

y = 6.0625 ⇒ Y = 97

Not associative:

Zbad = (X/Y ) · 24 = (86/97) · 24 = 0 · 24 = 0

Zgood = (X · 24)/Y = 1376/97 = 14 ⇒ z = 0.875

(correct first 6 digits are 0.888531)

38



Multiplication of Operands with Different Q-format

In general, multiplication of two fixed-point numbers Qm1.n1 and

Qm2.n2 gives an intermediate result in the format

Qm1+m2.n1+n2

which may then be right-shifted n1+n2−n3 steps and stored in the

format

Qm3.n3

Common case: n2 = n3 = 0 (one real operand, one integer operand,

and integer result). Then

Z = (X · Y )/2n1

39



Implementation of Multiplication in C

Assume Q4.3 operands and result

#include <inttypes.h> /* define int8_t, etc. (Linux only) */

#define n 3 /* number of fractional bits */

int8_t X, Y, Z; /* Q4.3 operands and result */

int16_t temp; /* Q9.6 intermediate result */

...

temp = (int16_t)X * Y; /* cast operands to 16 bits and multiply */

temp = temp >> n; /* divide by 2^n */

Z = temp; /* truncate and assign result */

40



Implementation of Multiplication in C with Rounding and Sat-

uration

#include <inttypes.h> /* defines int8_t, etc. (Linux only) */

#define n 3 /* number of fractional bits */

int8_t X, Y, Z; /* Q4.3 operands and result */

int16_t temp; /* Q9.6 intermediate result */

...

temp = (int16_t)X * Y; /* cast operands to 16 bits and multiply */

temp = temp + (1 << n-1); /* add 1/2 to give correct rounding */

temp = temp >> n; /* divide by 2^n */

if (temp > INT8_MAX) /* saturate the result before assignment */

Z = INT8_MAX;

else if (temp < INT8_MIN)

Z = INT8_MIN;

else

Z = temp;

41



Implementation of Division in C with Rounding

#include <inttypes.h> /* define int8_t, etc. (Linux only) */

#define n 3 /* number of fractional bits */

int8_t X, Y, Z; /* Q4.3 operands and result */

int16_t temp; /* Q9.6 intermediate result */

...

temp = (int16_t)X << n; /* cast operand to 16 bits and shift */

temp = temp + (Y >> 1); /* Add Y/2 to give correct rounding */

temp = temp / Y; /* Perform the division (expensive!) */

Z = temp; /* Truncate and assign result */

42



Atmel mega8/16 instruction set

Mnemonic Description # clock cycles

ADD Add two registers 1

SUB Subtract two registers 1

MULS Multiply signed 2

ASR Arithmetic shift right (1 step) 1

LSL Logical shift left (1 step) 1

• No division instruction; implemented in math library using expensive

division algorithm

43



Laboratory Exercise 3

• Control of a rotating DC servo using the ATmega16

ø 0.8� ø 0.8

ø 0‚95

ø␣0,3

ø 0,8

ø 0,8

ø 0,8

ø 0,8

ø 0‚8

ø 0,8

ø␣0,65

ø 0,8� ø 0,8

ø 0,95

ø␣0,3

ø 0.8� ø 0.8

ø 0‚8

ø 0‚95

ø␣0,3

ø␣0,65

ø␣0,65ø 0,5 ø 0,5�ø 0,5 ø␣0,65

ø␣0,65

ø 0‚8

1

s

k

Js +␣dΣ

ωω

gnd

FRICTION

COMPENSATION

ON

POWER� SAT. OVL.�RESET POS.RESET

LTH Reglerteknik␣R/B 88

θ

x0,1

x0,2

x0,1

x0,2

-1-1-1

Current

magnitude

4V/A

Ext. in

Moment

Ext. Int. +

LTH Reglerteknik RB 88

Int

OffOff

Reference

Ref out

• Velocity control (PI controller)

• Position control (state feedback from extended observer)

• Floating-point and fixed-point implementations

• Measurement of code size (and possibly execution time)

44



Controller Realizations

A linear controller

H(z) =
b0 + b1z

−1 + . . .+ bnz
−n

1 + a1z−1 + . . .+ anz−n

can be realized in a number of different ways with equivalent

input-output behavior, e.g.

• Direct form

• Companion (canonical) form

• Series (cascade) or parallel form

45



Direct Form

The input-output form can be directly implemented as

u(k) =

n∑

i=0

biy(k − i)−

n∑

i=1

aiu(k − i)

• Nonminimal (all old inputs and outputs are used as states)

• Very sensitive to roundoff in coefficients

• Avoid!

46



Companion Forms

E.g. controllable or observable canonical form

x(k + 1) =





−a1 −a2 · · · −an−1 −an

1 0 0 0

0 1 0 0
...

0 0 1 0





x(k) +





1

0
...

0





y(k)

u(k) =


 b1 b2 · · · bn



 x(k)

• Same problem as for the Direct form

• Very sensitive to roundoff in coefficients

• Avoid!

47



Better: Series and Parallel Forms

Divide the transfer function of the controller into a number of first- or

second-order subsystems:

+

Direct Form Series Form

Parallel Form

H(z)

H1(z)

H1(z)

H2(z)

H2(z)

• Try to balance the gain such that each subsystem has about the

same amplification

48



Example: Series and Parallel Forms

C(z) =
z4 − 2.13z3 + 2.351z2 − 1.493z + 0.5776

z4 − 3.2z3 + 3.997z2 − 2.301z + 0.5184
(Direct)

=
(z2 − 1.635z + 0.9025

z2 − 1.712z + 0.81

)(z2 − 0.4944z + 0.64

z2 − 1.488z + 0.64

)

(Series)

= 1 +
−5.396z + 6.302

z2 − 1.712z + 0.81
+

6.466z − 4.907

z2 − 1.488z + 0.64
(Parallel)

49



Example: Direct Form

Direct form with quantized coefficients (N = 8, n = 4):

Bode Diagram

Frequency (rad/sec)

P
h

a
s
e

 (
d

e
g

)
M

a
g

n
it
u

d
e

 (
d

B
)

−20

0

20

40

C(z)
C(z) direct form N=8

10
3

10
4

10
5

−225

−180

−135

−90

−45

0

50



Example: Direct Form

Pole−Zero Map

Real Axis

Im
a

g
 A

x
is

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

51



Example: Series Form

Series form with quantized coefficients (N = 8, n = 4):

Bode Diagram

Frequency (rad/sec)

P
h

a
s
e

 (
d

e
g

)
M

a
g

n
it
u

d
e

 (
d

B
)

−20

−10

0

10

20

30

C(z)
C(z) series form N=8

10
3

10
4

10
5

−225

−180

−135

−90

−45

0

52



Example: Series Form

Pole−Zero Map

Real Axis

Im
a

g
 A

x
is C(z)
C(z) cascade form N=8

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

53



Jackson’s Rules for Series Realizations

How to pair and order the poles and zeros?

Jackson’s rules (1970):

• Pair the pole closest to the unit circle with its closest zero. Repeat

until all poles and zeros are taken.

• Order the filters in increasing or decreasing order based on the poles

closeness to the unit circle.

This will push down high internal resonance peaks.

54



Short Sampling Interval Modification

In the state update equation

x(k + 1) = Φx(k) + Γy(k)

the system matrix Φ will be close to I if h is small. Round-off errors in

the coefficients of Φ can have drastic effects.

Better: use the modified equation

x(k + 1) = x(k) + (Φ− I)x(k) + Γy(k)

• Both Φ− I and Γ are roughly proportional to h

• Less round-off noise in the calculations

• Also known as the δ-form

55



Short Sampling Interval and Integral Action

Fast sampling and slow integral action can give roundoff problems:

I(k + 1) = I(k) + e(k) · h/Ti
︸ ︷︷ ︸

≈0

Possible solutions:

• Use a dedicated high-resolution variable (e.g. 32 bits) for the I-part

• Update the I-part at a slower rate

(This is a general problem for filters with very different time constants)

56


