
Figure 1

Solutions to the exam in Real-Time Systems 2016-08-23

These solutions are available on WWW: http://www.control.lth.se/course/FRTN01/

1.

a. The observer is given by

x̂(k+ 1�k) = Φ x̂(k�k− 1) + Γu(k) + K (y(k) − Cx̂(k�k− 1))

The matrix Φ − K C is given by

Φ − K C =
(0.5 0
−1 0

)
−

(k1

k2

)
(0 1) =

(0.5 −k1

−1 −k2

)

The characteristic equation is given by

z2 + (k2 − 0.5)z− (k1 + 0.5k2) = 0

Setting this equal to
z2 = 0

gives k1 = −0.25 and k2 = 0.5.

b. y = getY();
setU(u);
x1new = 0.5*x1 - k1*x2 + u + k1*y;
x2new = -x1 - k2*x2 + k2*y;
x1 = x1new;
x2 = x2new;
u = -l1*x1 - l2*x2;
Alternatively, you may replace k1 and k2 with their numerical values.

2. According to the Grafcet specification the conditions of all transitions con-
nected to the same step must be mutually exclusive. This is not the case for
the transitions connected to on since on.s > 120 and motionSensor might
become true at the same time. A corrected application is shown in Figure 1.

1

3.

a. Mutual exclusion synchronization is needed when

• multiple threads are accessing shared variables,
• multiple threads are calling non-reentrant code,
• multiple threads are using external units

Synchronization is always needed when there are concurrent accesses to a
common resource. Synchronization is not needed if the data is only accessed
from one source.

b. • takes the lock on: this instance of the class
• takes the lock on: this instance of the class. The difference compared

to the previous case is that the scope in which the lock is held can be
smaller than an entire method

• takes the lock on: the whole class, i.e. the class lock.
• takes the lock on: the object referenced

4. Partial fraction decomposition gives

G(s) = e−s 1
s+ 1 −

e−s

2
2

s+ 2

The delay of one time unit corresponds to 2 time samples. Combined with
the formula sheet this gives

H(z) = 1− e−0.5

z2(z− e−0.5) −
1− e−1

2z2(z− e−1)

5.

a. The control law gives the closed loop system

ẋ(t) =
(
−l1 1− l2

−1 0

)
x(t)

The characteristic equation of the closed loop system is

s2 + l1s+ (1− l2) = 0

which should be made equal to the desired characteristic equation

s2 + 2s+ 1 = 0,

i.e., l1 = 2 and l2 = 0.

2

b. Using the Laplace transfom method gives

(sI − A)−1 =
(s −1

1 s

)−1
= 1

s2 + 1

(s 1
−1 s

)

Hence

Φ = eAh = L−1(sI − A)−1 =
(cos h sin h
− sin h cos h

)

Γ =
∫ h

0

(cos v
− sin v

)
dv =

(sin h
cos h− 1

)

With h = π this becomes

Φ =
(−1 0

0 −1

)

Γ =
(0
−2

)

c. In order to be able to place the poles arbitrarily the system must be reach-
able, i.e. the matrix Wc = [Γ ΦΓ] must have full rank. In our case

Wc =
(0 0
−2 2

)

which has the determinant equal to 0. It is easily seen that the discrete-time
system has both its poles in −1. Only one of these poles is effected by the
control signal. The original continuous-time systems is, however, control-
lable. This can be seen from continuous-time controllability matrix [B AB]
which has full rank. Hence, through ZOH-sampling with this particular
sampling period the controllability is lost.

6. Factorizing the denominators gives the matching between the pulse-transfer
functions and the pole diagrams:

H1(z) = 1
z2 + 0.8z+ 0.07 =

1
(z+ 0.1)(z+ 0.7)

H2(z) = 1
z2 − 0.8z+ 0.07 =

1
(z− 0.1)(z− 0.7)

H3(z) = 1
z2 − 0.2z+ 0.01 =

1
(z− 0.1)2

H4(z) = 1
z− 1

H5(z) = 1
z2 − 0.8z+ 0.52 =

1
(z− 0.4+ 0.6i)(z− 0.4− 0.6i)

H6(z) = 1
z− 1.2

Only A and B are oscillatory, meaning that they have complex poles or poles
on the negative real axis. B oscillates at half the sampling frequency, which
means that it has poles on the negative real axis and we have f-B and d-A.

3

a has a pole outside the unit circle, resulting in the unstable system E.
e has a pole in 1, resulting in the integrator C.
b, c, D and F remain. The slowest pole (farthest from the origin) is slower
in c than in b. Hence, c is paired with the slower step response D and b is
paired with F.
The correct answer is:
1-f-B
2-c-D
3-b-F
4-e-C
5-d-A
6-a-E

7. Using the formula

ffundamental = �(f + fs/2) mod (fs) − fs/2�
with ffundamental = 0.1, f = 100 and fs � 50 we obtain fs = (100− 0.1)/2 =
49.95 and fs = (100 + 0.1)/2 = 50.05.

8 a. Each element, a, in the matrices is rounded in the following way:
aapprox = round(a⋅23)

23

The approximated system is

x(k+ 1) =
(0.875 0.875

0.125 0.500

)
x(k) +

(3.375
2.125

)
u(k)

y(k) = (5.125 7.375) x(k)

8 b. The poles of the systems are given by det(zI − A) = 0.
For the original system we have
�zI − A� = (z− 0.82)(z− 0.50) − 0.07 ⋅ 0.86 = z2− 1.32z+ 0.41− 0.07 ⋅ 0.86 =
0 � z1 = 0.953, z2 = 0.367
For the approximated system we get
�zI − A� = (z− 7

8)(z− 4
8) − 7

64 = z2 − 11
8 + 21

64 = 0 � z1 = 1.068, z2 = 0.307
The approximation causes one of the poles to move outside of the unit cir-
cle, meaning that the approximated system is unstable, unlike the original
system which is stable.

9.

a. Under EDF the task set is schedulable if

U =
i=n∑
i=1

Ci
Ti
≤ 1

In this case
U = 1/3+ 2/8+ 5/20 = 0.833

Hence, the task set is schedulable under EDF.

4

b. Using the original Lui and Layland sufficient-only test we get that

U = 0.833 > 3(21/3 − 1) = 0.7798

Hence, using this test we cannot tell if the task set is schedulable or not.
Using the hyperbolical sufficient-only test we get

i=n∏
i=1
(Ci
Ti
+ 1) = (0.333+ 1)(0.25 + 1)2 = 2.083 > 2

Hence, also using this test we cannot tell if the task set is schedulable or
not.
Using the response time analysis starting with the highest priority task we
get

R0
A = 0

R1
A = CA = 1 < 3

R0
B = 0

R1
B = CB = 2

R2
B = 2+

⌈
2
3

⌉
1 = 2+ 1 = 3

R3
B = 2+

⌈
3
3

⌉
1 = 2+ 1 = 3 < 8

R0
C = 0

R1
C = CC = 5

R2
B = 5+

⌈
5
3

⌉
1+

⌈
5
8

⌉
2 = 5+ 2+ 2 = 9

R3
B = 5+

⌈
9
3

⌉
1+

⌈
9
8

⌉
2 = 5+ 3+ 4 = 12

R4
B = 5+

⌈
12
3

⌉
1+

⌈
12
8

⌉
2 = 5+ 4+ 4 = 13

R4
B = 5+

⌈
13
3

⌉
1+

⌈
13
8

⌉
2 = 5+ 5+ 4 = 14

R5
B = 5+

⌈
14
3

⌉
1+

⌈
14
8

⌉
2 = 5+ 5+ 4 = 14 < 20

Hence, the task set is schedulable under fixed-priority rate-monotonic schedul-
ing.

c. Let’s begin with the Lui and Layland test. With TB as unknown we get the
equation

0.333+ 2/TB + 0.25 = 3(21/3 − 1) = 0.7798

This has the solution TB = 10.16. This is longer than the original value 8,
which we already know is OK, so this does not give anything.

5

If we do the same thing with the hyperbolic test we get

1.333 ∗ 1.25 ∗ (1+ 2/TB) = 2

This has the solution TB = 9.985. Also this is longer than the original value,
which we already know is OK, so again this does not give anything.
If we now use the upper bound on the response time and choose TB such
that the bounds for Task B and Task C equal their corresponding deadlines
we get the following two equations

R̄B = 2+ 1 ∗ (1− 0.333)
1− 0.333 = TB

This has the solution TB = 3.998 which is smaller than 8. However, we
must now also ensure that the deadline for Task C is larger than the upper
bound. Hence, we get

R̄C = 5+ 1 ∗ (1− 0.333) + 2(1− 2/TB)
1− (0.333+ 2/TB)

= 20

This has the solution TB = 6.346. Hence, we know for sure that TB = 6.346
is a feasible candidate as the shortest period for task B. If one spends the
time calculating the shortest period using response-time analysis the true
shortest period is 5.

10.

a. The support for condition synchronization in normal synchronized methods
in Java can not distinguish between different conditions. This means in
this case, e.g., that when a Producer enters a negative integer, also the
ConsumerB processes will be woken up, which only causes them to wait
again. A similar situation holds for ConsumerA processes for values that
are positive. Also, when a consumer gets a value it will not only wake up
the producers, but also other consumers.

b. public class Buffer {
private Semaphore mutex;
private ConditionVariable nonFull, fullForA, fullForB;
private int data;
private boolean full = false;

public Buffer() {
mutex = new Semaphore(1);
nonFull = new ConditionVariable(mutex);
fullForA = new ConditionVariable(mutex);
fullForB = new ConditionVariable(mutex);

}

public void put(int inData) {
mutex.take();
while (full) {

try {

6

nonFull.cvWait();
} catch (InterruptedException e) {
e.printStackTrace();

}
}
data = inData;
full = true;
if (data < 0) {

fullForA.cvNotifyAll();
} else {

fullForB.cvNotifyAll();
}
mutex.give();

}

public int getNegative() {
mutex.give();
while (!full) {

try {
fullForA.cvWait();

} catch (InterruptedException e) {
e.printStackTrace();

}
}
full = false;
nonFull.cvNotifyAll();
mutex.give();
return data;
}

public int getPositive() {
mutex.give();
while (!full) {

try {
fullForB.cvWait();

} catch (InterruptedException e) {
e.printStackTrace();

}
}
full = false;
nonFull.cvNotifyAll();
mutex.give();
return data;
}

}

The other classes remain the same. In this solution it is OK to replace all
occurrences of cvNotifyAll() with cvNotify() since it is always known
that the single thread that is woken up is actually waiting for the condition
that has occurred.

7

