
Department of

AUTOMATIC CONTROL

Real-Time Systems

Exam January 3, 2017, hours: 8.00–13.00

Points and grades

All answers must include a clear motivation and a well-formulated answer.

Answers may be given in English or Swedish. The total number of points is 25.

The maximum number of points is specified for each subproblem.

Accepted aid

The textbooks Real-Time Control Systems and Computer Control: An Overview

- Educational Version. Standard mathematical tables and authorized “Real-Time

Systems Formula Sheet”. Pocket calculator.

Results

The result of the exam will become accessible through LADOK. The solutions will

be available on WWW:

http://www.control.lth.se/course/FRTN01/
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Solutions to the exam in Real-Time Systems 170103

These solutions are available on WWW:

http://www.control.lth.se/course/FRTN01/

1. A system is described by the difference equation

y(k+ 2) − 2.5y(k + 1) + y(k) = u(k+ 1) + 0.5u(k)

a. Determine for the system the pulse transfer function from u to y. (1 p)

b. Is the system stable? Motivate your answer. (0.5 p)

Solution

a. Applying the Z-transform on the system gives

(z2 − 2.5z+ 1)Y (z) = (z+ 0.5)U(z) \ Y (z) =
z+ 0.5

z2 − 2.5z+ 1
U(z)

b. The roots of the transfer function are 0.5 and 2. Since one of the poles of the

system is outside the unit circle, the system is unstable.

2. Consider the system

x(k+ 1) =

[

0.5 0

1 0.9

]

x(k) +

[

0

1

]

u(k)

y(k) = [ 0 1 ] x(k)

a. Design a state feedback controller such as the poles of the closed loop systems
are both situated in 0.5 and the unit static gain is equal to 1. (2 p)

b. Design an observer on predictor form with both poles at z = 1/4. To get the
full points, you should also write down the equations for the observer. (2 p)

Solution

a. The control law for state feedback is u = lrr(k) − Lx(k) where L = [l1, l2].
The poles of the closed loop system are given by the characteristic polynomial

det(zI − (Φ − ΓL)) = det

([

z 0

0 z

]

−

[

0.5 0

1 0.9

]

+

[

0 0

l1 l2

])

=

(z− 0.5)(z + l2 − 0.9)

from which it is evident that one pole is already in 0.5. The position of the

second pole depends on the value of l2 and to place it in 0.5 simply means
selecing

l2 − 0.9 = −0.5 → l2 = 0.4

while the value of l1 is irrelevant.

Finally, in order to have a static gain of 1

lr =
1

C(I − Φ+ ΓL)−1Γ
= l2 + 0.1 = 0.5

2



b. An observer is given by

x̂(k+ 1) = Φ x̂(k) + Γu(k) + K(y(k) − Cx̂(k)) →

x̂(k+ 1) = (Φ − KC)x̂(k) + Γu(k) + Ky(k)

where K = [k1, k2]
T . The poles of the observer are determined by the eigen-

values of Φ − KC, which are computed as

det(zI − (Φ − KC)) = det

([

z 0

0 z

]

−

[

0.5 0

1 0.9

]

+

[

0 k1

0 k2

])

=

z2 + (k2 − 1.4)z+ (0.45− 0.5k2 + k1)

and imposing that the poles are in 0.25 means imposing that the characteristic

polynomial has the form (z− 0.25)(z− 0.25) which is z− 0.5z+ 0.0625.

z2 + (k2 − 1.4)z+ (0.45− 0.5k2 + k1) = z− 0.5z+ 0.0625

gives us

k2 − 1.4 = −0.5 → k2 = 0.9

and consequently

0.45− 0.5 · 0.9+ k1 = 0.0625 → k1 = 0.0625

.

The observer is therefore given by the equation

x̂(k+ 1) =

[

0.5 −0.0625

1.0 0.0

]

x̂(k) +

[

0

1

]

u(k) +

[

0.0625

0.9

]

y(k)

3. Consider the following task set.

Task Ti Di Ci

A 4 4 2

B 3 3 1

C 6 6 0.5

a. Using fixed-priority scheduling and rate-monotonic priority assignment, verify
whether the the task set is schedulable or not. (1 p)

b. Using EDF scheduling, verify whether the task set is schedulable or not.

(1 p)

Solution
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a. The ordinary RMS scheduling condition gives that

2

4
+

1

3
+

0.5

6
= 0.92 > 3(21/3 − 1) = 0.78

Hence, using this we cannot tell whether the task set is schedulable or not.

Using the hyperbolic condition leads to the same concludion since

( f rac24+ 1)(
1

3
+ 1)(

0.5

6
+ 1) = 2.17 > 2.

Finally using response time analysis we have that

R0
B = 0, R1

B = CB = 1 ≤ DB = 4

R0
A = 0, R1

A = C A = 2,

R2
A = C A +

⌈
2

TB

⌉

CB = 3,

R3
A = C A +

⌈
3

TB

⌉

CB = 3 ≤ D A = 4

R0
C = 0, R1

C = CC = 0.5,

R2
C = CC +

⌈
0.5

TA

⌉

C A +

⌈
0.5

TB

⌉

CB = CC + C A + CB = 3.5

R3
C = CC +

⌈
3.5

TA

⌉

C A +

⌈
3.5

TB

⌉

CB = CC + C A + 2CB = 4.5

R4
C = CC +

⌈
4.5

TA

⌉

C A +

⌈
4.5

TB

⌉

CB = CC + 2C A + 2CB = 6.5 > DC = 6

Hence, the task set is not schedulable.

b. Under EDF the schedulability conditions is

2

4
+

1

3
+

0.5

6
= 0.92 < 1

Hence, the task set is schedulable under EDF scheduling.

4. When implementing a controller, it is important to minimize the computa-

tional delay between the A-D conversion and the D-A conversion. The following

equations describe a digital controller with Kalman filtering and state feed-
back:

x̂(k) = (I − KC)
(

Φ x̂(k− 1) + Γu(k− 1)
)

+ Ky(k)

u(k) = −Lx̂(k)

In the general multi-input, multi-output (MIMO) case, if the process has r

inputs, p outputs, and n states, then Φ is an (n $ n) matrix, Γ is an (n $ r)
matrix, C is a (p $ n) matrix, L is an (r $ n) matrix, and K is an (n $ p)
matrix.

The controller should be implemented like this:
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LOOP

ReadInputs;

CalculateOutputs;

WriteOutputs;

UpdateStates;

t := t + h;

WaitUntil(t);

END

a. What calculations must be performed in CalculateOutputs and what calcu-
lations can be postponed to UpdateStates? Write pseudo-code for both parts,

and also point out things that can be pre-calculated before entering the con-

trol loop. (2 p)

b. Calculate the maximum number of floating-point operations (flops) carried
out in each part, as functions of r, p, and n. An addition, a subtraction, or a

multiplication of two scalars all count as one flop. Finally, specialize to the

single-input, single-output (SISO) case with r = 1, p = 1, and n = 4. (2 p)

Solution

a. The CalculateOutputs part can be reduced to

u := u1 - LK*y;

where u1 is the part of the control signal that can be computed in the previous

sample. The factor -L can be precalculated outside the loop. The UpdateStates
part can be written in different ways. The most straightforward implementa-

tion is perhaps

x := x1 + K*y; (* Finish current state estimate *)

x1 := (I-KC)Phi*x + Gamma*u; (* Prepare next state estimate *)

u1 := -L*x1; (* Prepare next control signal *)

The factors (I-KC)Phi and -L can be precalculated. A more clever solution is

to introduce the state variable w(k) = x̂(k) − Ky(k) and write the controller
on general state-space form. The UpdateStates part can then written

w := (I-KC)(Phi-GammaL)*w + (I-KC)(Phi-GammaL)K*y;

u1 := -L*w;

where the factors (I-KC)(Phi-GammaL), (I-KC)(Phi-GammaL)K, and -L can be

precalculated.

b. A multiplication between two matrices of sizes (a$b) and (b$ c) requires abc

multiplications and a(b−1)c additions, in total a(2b−1)c flops. CalculateOutputs:

u1 - LK*y requires r+ r(2p− 1) = 2rp flops. In the special case r = 1, p = 1,

n = 4, we get 2 flops. UpdateStates: In the first solution, x1 + K*y requires

n+n(2p− 1) flops, (I-KC)Phi*x + Gamma*u requires n+n(2n− 1)+n(2r− 1)
flops, and -L*x requires r(2n−1) flops. In total, we get 2n2+2np+4nr−n−r

flops, and in the special case we get 51 flops.

In the second solution, (I-KC)(Phi-GammaL)*w + (I-KC)(Phi-GammaL)K*y re-
quires n + n(2n − 1) + n(2p − 1) flops, and -L*w requires r(2n − 1) flops. In

total, we get 2n2 + 2np+ 2nr− n− r flops, and in the special case we get 43

flops.
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5. Henry Hacker has implemented a real-time application with three critical

common resources R1, R2 and R3 protected by mutual exclusion semaphores

accessed by three different processes P1, P2 and P3. The critical sections in

the three processes are accessed through the following statements:

P1 P2 P3

Wait(R1);

Wait(R2);

// Using R1 and R2

Signal(R2);

Signal(R1);

Wait(R2);

Wait(R3);

// Using R2 and R3

Signal(R3);

Signal(R2);

Wait(R3);

Wait(R1);

//Using R1 and R3

Signal(R1);

Signal(R3);

Do you see a problem with this solution? If so, explain why and suggest an

implementation avoiding the problem. (2 p)

Solution

The problem is that there is a circular wait-chain. If all processes execute the

first Wait-statement, they all have acquired a resource. In the next statement,

they all try to acquire another resource which is already held by one of the
other processes. Deadlock will occur. This may be solved by using hierarchical

resource allocation and rewriting P3 to:

Wait(R1);

Wait(R3);
// Using R1 and R3

Signal(R3);

Signal(R1);

6. An industrial process with a long time delay is described by the continuous-

time transfer function

G(s) =
1

(1+ 10s)2
e−30s

Discretize the process using ZOH and the sampling interval h = 1 and write

down the resulting transfer function H(z). What is the order of the resulting

discrete-time system? (2 p)

Solution

Since the delay τ = 30 is an integer multiple of the sampling interval h = 1,

it will translate into a backward shift of τ/h = 30 samples in the discrete-

time system. Sampling the non-delayed part of the system using Table 3 in
IFAC PB, we obtain

H′(z) =
1.1(1− e−0.1)z+ e−0.1(e−0.1 − 0.9)

(z− e−0.1)2
=

0.004679z+ 0.004377

z2 − 1.81z+ 0.8187

Including the delay we have

H(z) =
0.004679z+ 0.004377

(z2 − 1.81z+ 0.8187)z30

The system order is given by the order of the denominator polynomial: 32.
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7.

PSfrag

P(s)C(s)

e−sL

+

−

r y

Figure 1 Closed loop system in Problem 7, where the controller C(s) is one of C1(s), C2(s)
or C3(s).

A model for the position of a robot arm used for handling of radioactive

materials is given by the transfer function

P(s) =
1

s2
.

The process is to be controlled using a PD-controller of the form

C(s) = K

(

1+
sTd

1+ sTd/N

)

as shown in Figure 1, where the measurements of the position y are obtained

from some type of position sensor. There are three types of position sensors
available to choose between. Each of these sensors has different noise char-

acteristics, and therefore the parameter N in the controller needs to be set

differently depending of the choice of sensor. In addition, each sensor intro-

duces a different time delay, due to the different signal processing algorithms
needed to obtain the position measurement. The available sensors and the

relevant data are:

1. Laser range sensor, used with controller C1(s) with N = 100, time delay

L = 5 ms, price $10.000.

2. High-resolution Digital CCD Camera, used with controller C2(s) with

N = 8, time delay L = 30 ms, price $2.000.

3. Low-resolution digital CCD Camera, used with controller C3(s) with

N = 2, time delay L = 15 ms, price $500.

The Bode diagrams of the open-loop systems C1(s)P(s) (solid line), C2(s)P(s)
(dashed line) and C3(s)P(s) (dotted line) without time delay can be seen in

Figure 2.

a. Based on this information, and if a low cost is desired, which solution/sensor

would you recommend? (2 p)

b. Discretize the controller C(s) using the sampling time h and the backward

difference approximation. Show how the control signal u(k) at sample k can

be calculated from the control errors (r(k) − y(k), r(k− 1) − y(k− 1),...) and

previous values of the control signal and controller states. Determine which
part of the control signal u(k) can be pre-computed at sample (k−1). (1.5 p)

Solution
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Figure 2 Open-loop Bode diagrams C1(s)P(s) (solid line), C2(s)P(s) (dashed line) and

C3(s)P(s) (dotted line) in Problem 7.

a. From the Bode diagram we see that the phase margins are 65○ for C1(s), 50○

for C2(s) and 25○ for C3(s)at the crossover frequency ω c ( 40 rad/s. Therefore,

the corresponding delay margins are given by Lmax
1 = 65π/180/40 = 28 ms,

Lmax
2 = 55π/180/40 = 22 ms, and Lmax

3 = 25π/180/40 = 11 ms. We see

that time delay for system 2 and 3 are longer than the corresponding delay

margins, and the systems will be unstable. Therefore, only sensor 1 can be
recommended.

b. From the block diagram we see that

U(s) = K(1+
sTd

1+ sTd/N
)E(s)

with

E(s) = R(s) − Y (s)

or equivalently e(t) = r(t)− y(t). With backward Euler we replace s with q−1
qh

and get

u(k) = K e(k) + K
Td

q−1
qh

1+ Td(q−1)
qhN

e(k) = K e(k) + D(k)

with D(k) given by

D(k) = K
Td

q−1
qh

1+ Td(q−1)
qhN

e(k) = K
NTd(q− 1)

qNh + Td(q− 1)
e(k) =

K NTd(q− 1)

q(Nh + Td) − Td)
e(k)
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which can be written as

D(k+ 1) =
Td

Nh + Td

D(k) +
K NTd

Nh + Td

(e(k+ 1) − e(k)).

The control signal is therefore given by u(k) = K e(k) + D(k) or

u(k) = K e(k) +
Td

Nh + Td

D(k− 1) +
K NTd

Nh + Td

(e(k) − e(k− 1)) =

= (K +
K NTd

Nh + Td

)e(k) −
K NTd

Nh + Td

e(k− 1) +
Td

Nh + Td

D(k − 1)
︸ ︷︷ ︸

can be pre-computed at time k-1

8. Consider a simple chemical process that combines two reagents, R1 and R2,

to produce the final result. It works by first pouring enough of one reagent

into a container to reach a particular level, then pouring enough of the second

reagent until a second level is reached (while mixing both reagents), and then
emptying the container.

Figure 3 shows the system.

V2V1

V3
M

R1 R2

L0

L1
L2

Start

Acknowledge

Alarm

Figure 3 Simple chemical process.

Develop a Grafcet controller that guarantees the following desired sequence

of operations:

1. When the start button is pressed, V1 should be opened until level L1 is

reached.

2. When L1 is reached, the mixer should start mixing and simultaneously

V2 should be opened.

3. When L2 is reached, the mixer should stop, and V3 should be opened

until the tank’s level goes below L0.

4. If, after 10 minutes, the level of the tank is not below L0, an alarm is
started. The "acknowledge" button stops the alarm and allows restarting

of the control sequence.
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You may use the notation <stepname>.x (true when the step is active) and

<stepname>.s (the number of seconds that has elapsed since the step last

was activated) in your transitions. In order to get full points, the alarm

management should be performed in a Grafcet that is separate from the
Grafcet for the filling and emptying of the tank, and no extra variables/signals

may be used. (3 p)

Solution

The solution is given in Fig 4.

Figure 4 Grafcet for simple chemical process.

9. Consider the following two Java classes:

public class MyObject {

public int a = 2;

public static int b = 1;

}

public class MyClass {

public static void myMethod(int a, MyObject obj) {

a = 0;

obj.a = 3;

obj.b = 9;

}
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public static void main(String[] args) {

int a = 3;

MyObject ref1 = new MyObject();

MyObject ref2 = new MyObject();

a = 7;

myMethod(a,ref1);

System.out.println("Output 1 = " + a);

System.out.println("Output 2 = " + ref1.a);

System.out.println("Output 3 = " + ref2.b);

}

}

a. What will printed on the screen when the class MyClass is executed, i.e.,

> java MyClass? (1 p)

b. Explain why this is the case. (2 p)

Solution

a. The output will be

Output 1 = 7

Output 2 = 3

Output 3 = 9

b. a is a local variable which is assigned the value 7 in the main method. The

fact that a is passed as an argument to myMethod will not change its value,

since Java uses call-by-value when simple data types are used as method
arguments. ref1 is a reference to a MyClass object, which is then passed

as an argument to the method myMethod. Since Java uses call-by-reference

when passing objects as arguments to methods the assignment obj.a = 3

will be performed on the object referenced by ref1 (actually Java uses call-by
value also in this case since it is a reference that is the argument to the

method). Since b is declared as static all instances of MyClass will share this

attribute. Hence, the assignment obj.b = 9 in myMethod will effect also the

object referenced by ref2.
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