State Feedback and Observers

Real-Time Systems, Lecture 9

Anton Cervin

11 February 2016

Lund University, Department of Automatic Control

Lecture 9

[IFAC PB Chapter 8]

- State feedback
- Observers
- Integral action and disturbance estimation

2

Control Design

Many factors to consider, including:

- Attenuation of load disturbances
- Reduction of the effect of measurement noise
- Command signal following
- Variations and uncertainties in process behavior

Two Classes of Control Problems

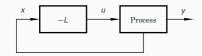
Regulation problems: compromise between rejection of load disturbances and injection of measurement noise

- Feedback
- Lecture 9

Servo problems: make the output respond to command signals in the desired way

- Feedforward
- Lecture 10

State Feedback: Problem Formulation



• Discrete-time process model

$$x(k+1) = \Phi x(k) + \Gamma u(k)$$

• Linear feedback from all state variables

$$u(k) = -Lx(k)$$

- Disturbances modelled by nonzero initial state $x(0) = x_0$
- Goal: Control the state to the origin, using a reasonable control signal

Closed-Loop System

The state equation

$$x(k+1) = \Phi x(k) + \Gamma u(k)$$

with the control law

$$u(k) = -Lx(k)$$

gives the closed-loop system

$$x(k+1) = (\Phi - \Gamma L)x(k)$$

Pole placement design: Choose ${\it L}$ to obtain the desired characteristic equation

$$\det(zI - \Phi + \Gamma L) = 0$$

(Matlab: place or acker)

Example – Double Integrator

$$x(k+1) = \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} x(k) + \begin{pmatrix} h^2/2 \\ h \end{pmatrix} u(k)$$

Linear state-feedback controller

$$u(k) = -Lx(k) = -l_1x_1(k) - l_2x_2(k)$$

The closed-loop system becomes

$$x(k+1) = (\Phi - \Gamma L)x(k)$$

$$= \begin{pmatrix} 1 - l_1 h^2 / 2 & h - l_2 h^2 / 2 \\ -l_1 h & 1 - l_2 h \end{pmatrix} x(k)$$

Characteristic equation

$$z^2 + \left(\frac{l_1h^2}{2} + l_2h - 2\right)z + \left(\frac{l_1h^2}{2} - l_2h + 1\right) = 0$$

Example Cont'd

Characteristic equation

$$z^{2} + \left(\frac{l_{1}h^{2}}{2} + l_{2}h - 2\right)z + \left(\frac{l_{1}h^{2}}{2} - l_{2}h + 1\right) = 0$$

Assume desired characteristic equation $z^2 + a_1z + a_2 = 0$.

Linear equations for I_1 and I_2

$$\frac{l_1h^2}{2} + l_2h - 2 = a_1 \qquad \qquad \frac{l_1h^2}{2} - l_2h + 1 = a_2$$

Solution:

$$I_1 = \frac{1}{h^2} (1 + a_1 + a_2)$$
$$I_2 = \frac{1}{2h} (3 + a_1 - a_2)$$

$$l_2 = \frac{1}{2h} (3 + a_1 - a_2)$$

• L depends on h

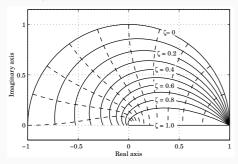
Where to Place the Poles?

Recall from Lecture 7:

Loci of constant ζ (solid) and ωh (dashed) when

$$\frac{\omega^2}{s^2 + 2\zeta \omega s + \omega^2}$$

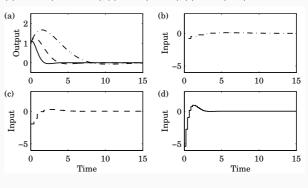
is sampled using ZOH ($z_i = e^{s_i h}$)



Example – Choice of Design Parameters

Double integrator, $x_0^T = [1 \quad 1], \omega h = 0.44, \zeta = 0.707$

(b) $\omega=$ 0.5 (dash-dotted), (c) $\omega=$ 1 (dashed), (d) $\omega=$ 2 (solid)



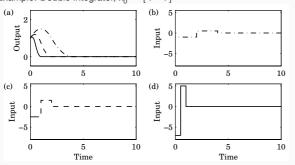
10

Deadbeat Control - Only in Discrete Time

Choose $P(z) = z^n \Rightarrow h$ only remaining design parameter

Drives all states to zero in at most *n* steps after an impulse disturbance in the states (can be very aggressive for small h!)

Example: Double integrator, $x_0^T = \begin{bmatrix} 1 & 1 \end{bmatrix}$



Controllability

The eigenvalues of $\Phi - \Gamma L$ can be placed arbitrarily if and only if the system is controllable, i.e. if the controllability matrix

$$W_c = \begin{pmatrix} \Gamma & \Phi\Gamma & \dots & \Phi^{n-1}\Gamma \end{pmatrix}$$

has full rank.

In practice, moving some eigenvalues could require high gain and lead to bad controllers.

State Feedback in Controllable Form

Convert the system to controllable canonical form:

$$x(k+1) = \begin{bmatrix} -a_1 & -a_2 & \dots & -a_n \\ 1 & 0 & \dots & 0 \\ & \ddots & & \vdots \\ & & 1 & 0 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u(k)$$

In this case, application of the state feedback

$$u = -I_1 x_1 - \cdots - I_n x_n$$

changes the coefficients a_1, \ldots, a_n to $a_1 + l_1, \ldots, a_n + l_n$, so the characteristic polynomial changes to

$$z^{n} + (a_{1} + l_{1})z^{n-1} + \cdots + (a_{n-1} + l_{n-1})z + a_{n} + l_{n}$$

Design method: Transform to controllable canonical form, apply state feedback, transform the controller back again – Ackermann's formula (see IFAC PB)

State Feedback with Integral Action

Integral action can be introduced by augmenting the plant model with an extra state variable, x_i , that integrates the plant output:

$$x_i(k+1) = x_i(k) + y(k) = x_i(k) + Cx(k)$$

The augmented open-loop system becomes

$$\begin{pmatrix} x(k+1) \\ x_i(k+1) \end{pmatrix} = \begin{pmatrix} \Phi & 0 \\ C & I \end{pmatrix} \begin{pmatrix} x(k) \\ x_i(k) \end{pmatrix} + \begin{pmatrix} \Gamma \\ 0 \end{pmatrix} u(k)$$

We can then design a state feedback controller

$$u(k) = -\begin{pmatrix} L & L_i \end{pmatrix}\begin{pmatrix} x(k) \\ x_i(k) \end{pmatrix}$$

using the same techniques as before

13

(Integral action can also be introduced using a disturbance observer, as we will see later)

14

Reconstruction

What to do if we cannot measure the full state vector or if we have noisy measurements?

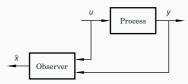
Reconstruction Through Direct Calculations

Basic idea: Reconstruct the state vector x(k) through direct calculations using the output and input sequences y(k), y(k-1), ..., u(k-1), u(k-2), ... together with the state-space model of the plant.

See IFAB PB p. 57 for details.

1

Reconstruction Using An Observer



Simulated process model:

$$\hat{x}(k+1) = \Phi \hat{x}(k) + \Gamma u(k)$$
$$\hat{y}(k) = C\hat{x}(k)$$

Introduce "feedback" from measured y(k)

$$\hat{x}(k+1) = \Phi \hat{x}(k) + \Gamma u(k) + K \Big(y(k) - C\hat{x}(k) \Big)$$

Reconstruction Using An Observer

Form the estimation error $\widetilde{x} = x - \hat{x}$

$$\widetilde{x}(k+1) = \Phi \widetilde{x}(k) - KC\widetilde{x}(k)$$

$$= [\Phi - KC]\widetilde{x}(k)$$

 Any observer pole placement possible, provided the observability matrix

$$W_o = \begin{pmatrix} C \\ \vdots \\ C \Phi^{n-1} \end{pmatrix}$$

has full rank

 Choose K to get good convergence but not too much amplification of measurement noise

Deadbeat Observer

A *deadbeat observer* is obtained if the observer gain K is chosen so that the matrix $\Phi - KC$ has all eigenvalues zero.

The observer error goes to zero in finite time (in at most n steps, where n is the order of the system)

Noise sensitive (fast observer dynamics)

Equivalent to reconstruction using direct calculations.

Observer for the Double Integrator

$$\Phi - KC = \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 - k_1 & h \\ -k_2 & 1 \end{pmatrix}$$

Characteristic equation

$$z^2 - (2 - k_1)z + 1 - k_1 + k_2h = 0$$

Desired characteristic equation:

$$z^2 + p_1 z + p_2 = 0$$

Gives:

$$2 - k_1 = -p_1$$
$$1 - k_1 + k_2 h = p_2$$

1

20

Observer for the Double Integrator cont'd

Solution:

$$k_1 = 2 + p_1$$

 $k_2 = (1 + p_1 + p_2)/h$

Assume deadbeat observer ($p_1 = p_2 = 0$)

$$k_1 = 2$$

$$k_2 = 1/h$$

Resulting observer (assuming u = 0)

$$\hat{x}_1(k+1) = \hat{x}_1(k) + h\hat{x}_2(k) + 2(y(k) - \hat{x}_1(k))$$

$$\hat{x}_2(k+1) = \hat{x}_2(k) + \frac{1}{h} \left(y(k) - \hat{x}_1(k) \right)$$

An Alternative Observer

The observer presented so far has a one sample delay: $\hat{x}(k \mid k-1)$ depends only on measurements up to time k-1

Alternative observer with direct term:

$$\begin{split} \hat{x}(k \mid k) &= \Phi \hat{x}(k-1 \mid k-1) + \Gamma u(k-1) \\ &+ K \Big[y(k) - C \Big(\Phi \hat{x}(k-1 \mid k-1) + \Gamma u(k-1) \Big) \Big] \\ &= (I - KC) \Big(\Phi \hat{x}(k-1 \mid k-1) + \Gamma u(k-1) \Big) + Ky(k) \end{split}$$

Reconstruction error:

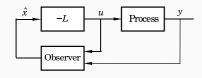
$$\widetilde{x}(k \mid k) = x(k) - \widehat{x}(k \mid k) = (\Phi - KC\Phi)\widetilde{x}(k-1 \mid k-1)$$

- $\Phi KC\Phi$ can be given arbitrary eigenvalues if ΦKC can
- K may be chosen so that some of the states will be observed directly through $y\Rightarrow$ the order of the observer can be reduced
 - Reduced order observer or Luenberger observer

22

Output Feedback

State feedback from observed state:



Controller:

$$\hat{x}(k+1) = \Phi \hat{x}(k) + \Gamma u(k) + K(y(k) - C\hat{x}(k))$$
$$u(k) = -L\hat{x}(k)$$

Controller transfer function (from y to u):

$$H_c(z) = -L(zI - \Phi + \Gamma L + KC)^{-1}K$$

Analysis of the Closed-Loop System

$$x(k+1) = \Phi x(k) + \Gamma u(k)$$

$$\tilde{x}(k+1) = (\Phi - KC)\tilde{x}(k)$$

$$u(k) = -L\hat{x}(k) = -L(x(k) - \tilde{x}(k))$$

Eliminate u(k)

$$\begin{pmatrix} x(k+1) \\ \widetilde{x}(k+1) \end{pmatrix} = \begin{pmatrix} \Phi - \Gamma L & \Gamma L \\ 0 & \Phi - KC \end{pmatrix} \begin{pmatrix} x(k) \\ \widetilde{x}(k) \end{pmatrix}$$

Separation

Control poles: $A_c(z) = \det(zI - \Phi + \Gamma L)$ Observer poles: $A_o(z) = \det(zI - \Phi + KC)$

Disturbance Estimation

How to handle disturbances that can not be modeled as impulse disturbances in the process state?

Assume that the process is described by

$$\frac{dx}{dt} = Ax + Bu + v$$
$$v = Cx$$

where v is a disturbance modeled as

$$\frac{dw}{dt} = A_w w$$
$$v = C_w w$$

Since disturbances typically have most of their energy at low frequencies, A_w often has eigenvalues in the origin (constant disturbance) or on the imaginary axis (sinusoidal disturbance)

Disturbance Estimation

Augment the state vector: $\begin{pmatrix} x \\ w \end{pmatrix}$

Gives the augmented system

$$\frac{d}{dt} \begin{pmatrix} x \\ w \end{pmatrix} = \begin{pmatrix} A & C_w \\ 0 & A_w \end{pmatrix} \begin{pmatrix} x \\ w \end{pmatrix} + \begin{pmatrix} B \\ 0 \end{pmatrix} u$$
$$y = \begin{pmatrix} C & 0 \end{pmatrix} \begin{pmatrix} x \\ w \end{pmatrix}$$

Sample this using ZOH:

$$\begin{pmatrix} x(k+1) \\ w(k+1) \end{pmatrix} = \begin{pmatrix} \Phi & \Phi_{xw} \\ 0 & \Phi_w \end{pmatrix} \begin{pmatrix} x(k) \\ w(k) \end{pmatrix} + \begin{pmatrix} \Gamma \\ 0 \end{pmatrix} u(k)$$

$$y = \begin{pmatrix} C & 0 \end{pmatrix} \begin{pmatrix} x(k) \\ w(k) \end{pmatrix}$$

. .

Augmented Observer and State Feedback

Augmented observer:

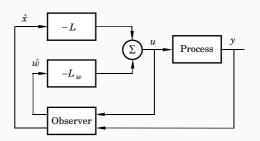
$$\begin{pmatrix} \hat{x}(k+1) \\ \hat{w}(k+1) \end{pmatrix} = \begin{pmatrix} \Phi & \Phi_{XW} \\ 0 & \Phi_{w} \end{pmatrix} \begin{pmatrix} \hat{x}(k) \\ \hat{w}(k) \end{pmatrix} + \begin{pmatrix} \Gamma \\ 0 \end{pmatrix} u(k) + \begin{pmatrix} K \\ K_{w} \end{pmatrix} \epsilon(k)$$
with $\epsilon(k) = y(k) - C\hat{x}(k)$

Augmented state feedback control law:

$$u(k) = -L\hat{x}(k) - L_w\hat{w}(k)$$

If possible, select L_w such that $\Phi_{xw} - \Gamma L_w = 0$

Disturbance Estimation: Block Diagram



2

Disturbance Estimation: Closed-Loop System

The closed-loop system can be written

$$\begin{aligned} x(k+1) &= (\Phi - \Gamma L)x(k) + (\Phi_{xw} - \Gamma L_w)w + \Gamma L\widetilde{x}(k) + \Gamma L_w\widetilde{w} \\ w(k+1) &= \Phi_w w(k) \\ \widetilde{x}(k+1) &= (\Phi - KC)\widetilde{x}(k) + \Phi_{xw}\widetilde{w}(k) \\ \widetilde{w}(k+1) &= \Phi_w\widetilde{w}(k) - K_wC\widetilde{x}(k) \end{aligned}$$

- L ensures that x goes to zero at the desired rate after a disturbance.
- The gain L_w reduces the effect of the disturbance v on the system by feedforward from the estimated disturbance ŵ.
- K and K_w influence the rate at which the estimation errors go to zero.

Special Case: Constant Input Disturbance

Assume constant disturbance acting on the plant input:

- \bullet V = W
- $\bullet \ \Phi_w = 1$
- Φ_{xw} = Γ

If we choose $L_{\it w}=1$ we will have perfect cancellation of the load disturbance

New controller + estimator

$$u(k) = -L\hat{x}(k) - \hat{v}(k)$$

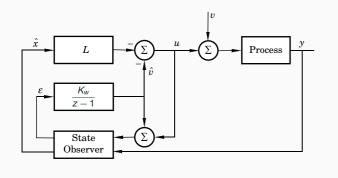
$$\hat{x}(k+1) = \Phi\hat{x}(k) + \Gamma(\hat{v}(k) + u(k)) + K\epsilon(k)$$

$$\hat{v}(k+1) = \hat{v}(k) + K_w\epsilon(k) \qquad \text{(integrator)}$$

$$\epsilon(k) = y(k) - C\hat{x}(k)$$

29

Special Case: Block Diagram



Example - Design

· Control of double integrator

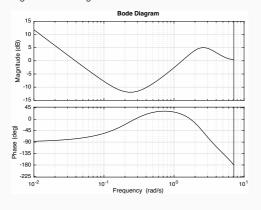
$$\frac{dx}{dt} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u$$
$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} x$$

- Sample with *h* = 0.44
- • Discrete state feedback designed based on continuous-time specification $\omega=$ 1, $\zeta=0.7$
 - Gives $L = [0.73 \ 1.21]$
- ullet Extended observer assuming constant input disturbance to obtain integral action; all three poles placed in z=0.75.

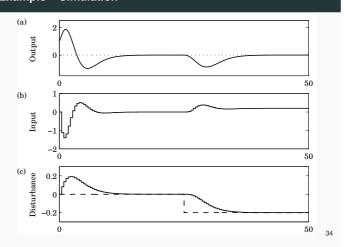
00

Example - Design

Bode diagram of resulting controller:



Example - Simulation



Optimization-Based Design

Pole placement design used in this course:

• L and K derived through pole placement

In the course Multivariable Control (Flervariabel Reglering), L and K are instead derived through optimization

- LQ (Linear Quadratic) and LQG (Linear Quadratic Gaussian) control
- Short overview in Chapter 11 of IFAC PB
- Not part of this course

Example in Matlab

>> A = [0 1: 0 0]: >> B = [0; 1]; >> [Phi,Gamma] = c2d(A,B,h) >> Hp = ss(Phi,Gamma,C,0,h); >> % Desired poles in continuous time >> omega = 1; zeta = 0.7; >> pc = roots([1 2*zeta*omega omega^2]) >> % Corresponding desired discrete-time poles >> pd = exp(pc*h) >> % Design state feedback >> L = place(Phi,Gamma,pd)
>> Le = [L 1]; >> % Design augmented observer >> Phie = [Phi Gamma; zeros(1,2) 1]; >> Ce = [C 0]; >> Ke = acker(Phie', Ce', [0.75 0.75 0.75])' >> % Form controller >> Hc = ss(Phie-Gammae*Le-Ke*Ce,Ke,Le,O,h); >> bode(Hc)

35