Input-Output Models
 Real-Time Systems, Lecture 7

Anton Cervin
3 February 2016
Lund University, Department of Automatic Control

Lecture 7: Input-Output Models

[IFAC PB Ch 3 p 22-34]

- Shift operators; the pulse transfer operator
- Z-transform; the pulse transfer function
- Transformations between system representations
- System response, frequency response
- ZOH sampling of a transfer function

Linear System Models

	State-space model	Input-output models	
CT	$\begin{aligned} \dot{x}(t) & =A x(t)+B u(t) \\ y(t) & =C x(t) \end{aligned}$	$\begin{aligned} \frac{d^{n} y}{d t^{n}} & +a_{1} \frac{d^{n-1} y}{d t^{n-1}}+\cdots+a_{n} y \\ & =b_{1} \frac{d^{n-1} u}{d t^{n-1}}+\cdots+b_{n} u\end{aligned}$	$G(p) / G(s)$
DT	$\begin{aligned} x(k+1) & =\Phi x(k)+\Gamma u(k) \\ y(k) & =C x(k) \end{aligned}$	$\begin{array}{r} y(k)+a_{1} y(k-1)+\cdots+ \\ a_{n} y(k-n)=b_{1} u(k-1) \\ +\cdots+b_{n} u(k-n) \end{array}$	$H(q) / H(z)$

More I-O models: (im)pulse response, step response, frequency response

Shift Operators

Operators on time series
The sampling period is chosen as the time unit $(f(k) \Leftrightarrow f(k h))$
Time series are doubly infinite sequences:

- $f(k): k=\ldots-1,0,1, \ldots$

Forward shift operator:

- denoted q
- $q f(k)=f(k+1)$
- $q^{n} f(k)=f(k+n)$

Backward shift operator:

- denoted q^{-1}
- $q^{-1} f(k)=f(k-1)$
- $q^{-n} f(k)=f(k-n)$

Pulse Transfer Operator

Rewrite the state-space model using the forward shift operator:

$$
\begin{aligned}
x(k+1) & =q x(k)=\Phi x(k)+\Gamma u(k) \\
y(k) & =C x(k)+D u(k)
\end{aligned}
$$

Eliminate $x(k)$:

$$
\begin{aligned}
x(k) & =(q I-\Phi)^{-1} \Gamma u(k) \\
y(k) & =C x(k)+D u(k)=C(q I-\Phi)^{-1} \Gamma u(k)+D u(k) \\
& =\left[C(q I-\Phi)^{-1} \Gamma+D\right] u(k)=H(q) u(k)
\end{aligned}
$$

$H(q)$ is the pulse transfer operator of the system
Describes how the input and output are related.

Poles and Zeros (SISO case)

The pulse transfer function is a rational function

$$
H(q)=\frac{B(q)}{A(q)}
$$

$\operatorname{deg} A=n=$ the number of states
$\operatorname{deg} B=n_{b} \leq n$
$A(q)$ is the characteristic polynomial of Φ, i.e.

$$
A(q)=\operatorname{det}(q I-\Phi)
$$

The poles of the system are given by $A(q)=0$
The zeros of the system are given by $B(q)=0$

Interpretation of Poles and Zeros

Poles:

- A pole in a is associated with the time function $f(k)=a^{k}$

Zeros:

- A zero in a implies that the transmission of the input $u(k)=a^{k}$ is blocked by the system
- Related to how inputs and outputs are coupled to the states

Disk Drive Example

Recall the double integrator from the previous lecture:

$$
\begin{aligned}
\frac{d x}{d t} & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] x
\end{aligned}
$$

Sample with $h=1$:

$$
\begin{aligned}
& \Phi=e^{A h}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
& \Gamma=\int_{0}^{h} e^{A s} B d s=\left[\begin{array}{c}
0.5 \\
1
\end{array}\right]
\end{aligned}
$$

Disk Drive Example

Pulse transfer operator:

$$
\begin{aligned}
H(q) & =C(q I-\Phi)^{-1} \Gamma+D \\
& =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
q-1 & -1 \\
0 & q-1
\end{array}\right]^{-1}\left[\begin{array}{c}
0.5 \\
1
\end{array}\right]=\frac{0.5(q+1)}{(q-1)^{2}}
\end{aligned}
$$

Two poles in 1, one zero in -1 .

From Pulse Transfer Operator to Difference Equation

$$
\begin{gathered}
y(k)=H(q) u(k) \\
A(q) y(k)=B(q) u(k) \\
\left(q^{n}+a_{1} q^{n-1}+\cdots+a_{n}\right) y(k)=\left(b_{0} q^{n_{b}}+\cdots+b_{n_{b}}\right) u(k)
\end{gathered}
$$

which means

$$
\begin{aligned}
y(k+n)+a_{1} y(k+n-1) & +\cdots+a_{n} y(k) \\
& =b_{0} u\left(k+n_{b}\right)+\cdots+b_{n_{b}} u(k)
\end{aligned}
$$

Difference Equation with Backward Shift

$$
\begin{aligned}
y(k+n)+a_{1} y(k+n-1) & +\cdots+a_{n} y(k) \\
& =b_{0} u\left(k+n_{b}\right)+\cdots+b_{n_{b}} u(k)
\end{aligned}
$$

can be written as

$$
\begin{aligned}
y(k)+a_{1} y(k-1) & +\cdots+a_{n} y(k-n) \\
& =b_{0} u(k-d)+\cdots+b_{n_{b}} u\left(k-d-n_{b}\right)
\end{aligned}
$$

where $d=n-n_{b}$ is the pole excess of the system.

Difference Equation with Backward Shift

The reciprocal polynomial

$$
A^{*}(q)=1+a_{1} q+\cdots+a_{n} q^{n}=q^{n} A\left(q^{-1}\right)
$$

is obtained from the polynomial A by reversing the order of the coefficients.

Now the system can instead be written as

$$
A^{*}\left(q^{-1}\right) y(k)=B^{*}\left(q^{-1}\right) u(k-d)
$$

Difference Equation Example

Using forward shift

$$
y(k+2)+2 y(k+1)+3 y(k)=2 u(k+1)+u(k)
$$

can be written

$$
\left(q^{2}+2 q+3\right) y(k)=(2 q+1) u(k)
$$

Hence,

$$
\begin{aligned}
& A(q)=q^{2}+2 q+3 \\
& B(q)=2 q+1
\end{aligned}
$$

Using backward shift, the same equation can be written ($d=1$)

$$
\left(1+2 q^{-1}+3 q^{-2}\right) y(k)=\left(2+q^{-1}\right) u(k-1)
$$

Hence,

$$
\begin{aligned}
& A^{*}\left(q^{-1}\right)=1+2 q^{-1}+3 q^{-2} \\
& B^{*}\left(q^{-1}\right)=2+q^{-1}
\end{aligned}
$$

Z-transform

The discrete-time counterpart to the Laplace transform
Defined on semi-infinite time series $f(k): k=0,1, \ldots$

$$
Z\{f(k)\}=F(z)=\sum_{k=0}^{\infty} f(k) z^{-k}
$$

z is a complex variable

Example - Discrete-Time Step Signal

Let $y(k)=1$ for $k \geq 0$. Then

$$
Y(z)=1+z^{-1}+z^{-2}+\cdots=\frac{z}{z-1}, \quad|z|>1
$$

Application of the following result for power series

$$
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} \text { for }|x|<1
$$

Z-transform Table

Table 2 (p 26) in IFAC PB (ignore the middle column!)

f		
$\delta(k)$ (pulse)	-	1
$1 \quad k \geq 0$ (step)	$\frac{1}{s}$	$\frac{z}{z-1}$
$k h$	$\frac{1}{s^{2}}$	$\frac{h z}{(z-1)^{2}}$
$\frac{1}{2}(k h)^{2}$	$\frac{1}{s^{3}}$	$\frac{h^{2} z(z+1)}{2(z-1)^{3}}$
$e^{-k h / T}$	$\frac{T}{1+s T}$	$\frac{z}{z-e^{-h / T}}$
$1-e^{-k h / T}$	$\frac{1}{s(1+s T)}$	$\frac{z\left(1-e^{-h / T}\right)}{(z-1)\left(z-e^{-h / T}\right)}$
$\sin \omega k h$	$\frac{z \sin \omega h}{s^{2}+\omega^{2}}$	$\frac{z^{2}-2 z \cos \omega h+1}{}$

Some Properties of the Z-transform

$$
\begin{aligned}
Z(\alpha f+\beta g) & =\alpha F(z)+\beta G(z) \\
Z\left(q^{-n} f\right) & =z^{-n} F(z) \\
Z(q f) & =z(F(z)-f(0)) \\
Z(f * g) & =Z\left\{\sum_{j=0}^{k} f(j) g(k-j)\right\}=F(z) G(z)
\end{aligned}
$$

From State Space to Pulse Transfer Function

$$
\begin{aligned}
& \left\{\begin{array}{l}
x(k+1)=\Phi x(k)+\Gamma u(k) \\
y(k)=C x(k)+D u(k)
\end{array}\right. \\
& \left\{\begin{array}{l}
z(X(z)-x(0))=\Phi X(z)+\Gamma U(z) \\
Y(z)=C X(z)+D U(z)
\end{array}\right. \\
& Y(z)=C(z l-\Phi)^{-1} z x(0)+\left[C(z l-\Phi)^{-1} \Gamma+D\right] U(z)
\end{aligned}
$$

The rational function $H(z)=C(z l-\Phi)^{-1} \Gamma+D$ is called the pulse transfer function from u to y.
It is the Z-transform of the pulse response $h(k)$

$H(q)$ vs $H(z)$

The pulse transfer operator $H(q)$ and the pulse transfer function $H(z)$ are the same rational functions

They have the same poles and zeros
$H(q)$ is used in the time domain ($q=$ shift operator) $H(z)$ is used in the Z-domain ($z=$ complex variable)

Calculating System Response Using the Z-transform

1. Find the pulse transfer function $H(z)=C(z l-\Phi)^{-1} \Gamma+D$
2. Compute the Z-transform of the input: $U(z)=Z\{u(k)\}$
3. Compute the Z-transform of the output:

$$
Y(z)=C(z I-\Phi)^{-1} z x(0)+H(z) U(z)
$$

4. Apply the inverse Z-transform (table) to find the output:

$$
y(k)=Z^{-1}\{Y(z)\}
$$

Frequency Response - Continuous Time

Given a stable system $G(s)$, the input $u(t)=\sin \omega t$ will, after a transient, give the output

$$
y(t)=|G(i \omega)| \sin (\omega t+\arg G(i \omega))
$$

- The amplitude and phase shift for different frequencies are given by the value of $G(s)$ along the imaginary axes, i.e. $G(i \omega)$
- Plotted in Bode and Nyquist diagrams

Frequency Response - Discrete Time

Given a stable system $H(z)$, the input $u(k)=\sin (\omega k)$ will, after a transient, give the output

$$
y(k)=\left|H\left(e^{i \omega}\right)\right| \sin \left(\omega k+\arg H\left(e^{i \omega}\right)\right)
$$

- $G(s)$ and the imaginary axis are replaced by $H(z)$ and the unit circle.
- Only describes what happens at the sampling instants
- The inter-sample behavior is not studied in this course

Bode Diagram

Bode diagram for $G(s)=1 /\left(s^{2}+1.4 s+1\right)$ (solid) and ZOH-sampled counterpart $H(z)$ (dashed, plotted for $\omega h \in[0, \pi]$)

Bode Diagram

The hold circuit can be approximated by a delay of $h / 2$

Nyquist Diagram

Nyquist diagram for $G(s)=1 /\left(s^{2}+1.4 s+1\right)$ (solid) and ZOH-sampled counterpart $H(z)$ (dashed, plotted for $\omega h \in[0, \pi]$) Nyquist Diagram

ZOH Sampling of a Transfer Function

How to calculate $H(z)$ given $G(s)$?

Calculation of $H(z)$ Given $G(s)$

Three approaches:

1. Make a state-space realization of $G(s)$. Sample using ZOH to obtain Φ and Γ. Then $H(z)=C(z l-\Phi)^{-1} \Gamma+D$.

- Works also for systems with time delays, $G(s) e^{-s \tau}$

2. Use the formula

$$
\begin{aligned}
H(z) & =\frac{z-1}{z} \frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} \frac{e^{s h}}{z-e^{s h}} \frac{G(s)}{s} d s \\
& =\sum_{s=s_{i}} \frac{1}{z-e^{s h}} \operatorname{Res}\left\{\frac{e^{s h}-1}{s} G(s)\right\}
\end{aligned}
$$

- s_{i} are the poles of $G(s)$ and Res denotes the residue.
- outside the scope of the course

Calculation of $H(z)$ Given $G(s)$

3. Use Table 3 (p 27) in IFAC PB

$$
\begin{array}{ll}
G(s) & H(z)=\frac{b_{1} z^{n-1}+b_{2} z^{n-2}+\cdots+b_{n}}{z^{n}+a_{1} z^{n-1}+\cdots+a_{n}} \\
\frac{1}{s} & \frac{h}{z-1} \\
\frac{1}{s^{2}} & \frac{h^{2}(z+1)}{2(z-1)^{2}} \\
e^{-s h} & \frac{1-\exp (-a h)}{z-\exp (-a h)} \\
\frac{z^{-1}}{s+a} & b_{1}=\frac{1}{a}\left(a h-1+e^{-a h}\right) \\
\frac{a}{s(s+a)} & a_{1}=-\left(1+e^{-a h}\right) \\
\hline \frac{1}{a}\left(1-e^{-a h}-a h e^{-a h}\right) \\
& a_{2}=e^{-a h}
\end{array}
$$

Calculation of $H(z)$ Given $G(s)$

Example: For $G(s)=e^{-\tau s} / s^{2}$, the previous lecture gave

$$
\begin{aligned}
x(k h+h) & =\Phi x(k h)+\Gamma_{1} u(k h-h)+\Gamma_{0} u(k h) \\
\Phi & =\left(\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right) \quad \Gamma_{1}=\binom{\tau\left(h-\frac{\tau}{2}\right)}{\tau} \quad \Gamma_{0}=\binom{\frac{(h-\tau)^{2}}{2}}{h-\tau}
\end{aligned}
$$

With $h=1$ and $\tau=0.5$, this gives

$$
H(z)=C(z l-\Phi)^{-1}\left(\Gamma_{0}+\Gamma_{1} z^{-1}\right)=\frac{0.125\left(z^{2}+6 z+1\right)}{z\left(z^{2}-2 z+1\right)}
$$

Order: 3
Poles: 0, 1, and 1
Zeros: $-3 \pm \sqrt{8}$

Calculation of $H(z)$ Given $G(s)$

ZOH sampling is a linear operation, so a large transfer function $G(s)$ may be split into smaller parts $G_{1}(s)+G_{2}(s)+\ldots$ that are sampled separately

Transformation of Poles via ZOH Sampling: $z_{i}=e^{s, h}$

New Evidence of the Alias Problem

Several points in the s-plane are mapped into the same point in the z-plane. The map is not bijective

Transformation of Zeros via Sampling

- More complicated than for poles
- Extra zeros may appear in the sampled system
- There can be zeros outside the unit circle (non-minimum phase) even if the continuous system has all the zeros in the left half plane
- For short sampling periods

$$
z_{i} \approx e^{s_{i} h}
$$

ZOH Sampling of a Second Order System

Second order continuous-time system with complex poles:

$$
G(s)=\frac{\omega_{0}^{2}}{s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}}, \quad \zeta<1
$$

- Larger $\omega_{0} \Rightarrow$ faster system response
- Smaller $\varphi \Rightarrow$ larger damping. Relative damping $\zeta=\cos \varphi$.
- Common control design choice: $\zeta=\cos 45^{\circ} \approx 0.7$

Sampled Second Order System

The poles of the sampled system are given by

$$
z^{2}+a_{1} z+a_{2}=0
$$

where

$$
\begin{aligned}
& a_{1}=-2 e^{-\zeta \omega_{0} h} \cos \left(\sqrt{1-\zeta^{2}} \omega_{0} h\right) \\
& a_{2}=e^{-2 \zeta \omega_{0} h}
\end{aligned}
$$

Sampled Second Order System

Examples in Matlab

```
>> % From state space system to pulse transfer function
>> A = [0 1; 0 0];
>> B = [0; 1];
>> C = [1 0];
>> D = 0;
>> contsys = ss(A,B,C,D);
>> h = 1;
>> discsys = c2d(contsys,h);
>> tf(discsys) % pulse transfer function
>> zpk(discsys) % factored pulse transfer function
>> % Bode and Nyquist diagrams
>> s = tf('s'); G = 1/(s^2+1.4*s+1);
>> H = c2d(G,1);
>> bode(G,H)
>> nyquist(G,H)
>> % Sampling of a second-order transfer function
>> G = 1/( s^2+s+1);
>> h = 0.1;
>>H = c2d(G,h)
```

